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The Ground State and the Long-Time
Evolution in the CMC Einstein Flow

Martin Reiris

Abstract. Let (g, K)(k) be a CMC (vacuum) Einstein flow over a compact
three-manifold Σ with non-positive Yamabe invariant (Y (Σ)). As noted by

Fischer and Moncrief, the reduced volume V(k) =
(−k

3

)3
Volg(k)(Σ) is mono-

tonically decreasing in the expanding direction and bounded below by Vinf =
(−1

6
Y (Σ)

) 3
2 . Inspired by this fact we define the ground state of the mani-

fold Σ as “the limit” of any sequence of CMC states {(gi, Ki)} satisfying: (i)
ki = −3, (ii) Vi ↓ Vinf , (iii) Q0((gi, Ki)) ≤ Λ, where Q0 is the Bel–Robinson
energy and Λ is any arbitrary positive constant. We prove that (as a geomet-
ric state) the ground state is equivalent to the Thurston geometrization of
Σ. Ground states classify naturally into three types. We provide examples for
each class, including a new ground state (the Double Cusp) that we analyze
in detail. Finally, consider a long time and cosmologically normalized flow

(g̃, K̃)(σ) =
((−k

3

)2
g,

(−k
3

)
K

)
, where σ = − ln(−k) ∈ [a, ∞). We prove that

if Ẽ1 = E1((g̃, K̃)) ≤ Λ (where E1 = Q0 + Q1, is the sum of the zero and first

order Bel–Robinson energies) the flow (g̃, K̃)(σ) persistently geometrizes the
three-manifold Σ and the geometrization is the ground state if V ↓ Vinf .

1. Introduction

Consider a cosmological space–time solution g over M = Σ × (σ0,∞), where Σ is
a compact three-manifold having non-positive Yamabe invariant Y (Σ).1 Suppose
that the foliation {Σ × {σ}} is CMC and that σ is the logarithmic time, namely
suppose that each slice Σ×{σ} is of constant mean curvature k = −e−σ. Consider

This work was completed while the author was a Moore Instructor at MIT.
1 The Yamabe invariant (sometimes called sigma constant) is defined as the supremum of the
scalar curvatures of unit volume Yamabe metrics. A Yamabe metric is a metric minimizing the
Yamabe functional in a given conformal class.
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the Einstein (CMC) flow (g,K)(σ) where g(σ) and K(σ) are the induced three-
metric and second fundamental form over each slice Σ×{σ}. A natural question to
ask is the following. Suppose we observe the evolution of (g,K) at the cosmological
scale, then, is the long-time fate of (g,K) (at the cosmological scale) unique, and
if so, how can one characterize it? If the answer is yes, one would naturally call
the limit the ground state (at the cosmological scale) as any solution would decay
to it. In this article we will present partial answers to this question. We elaborate
on that below.

It is a simple but interesting fact that (with generality) one can interpret −k
3

as equal to the Hubble parameter H of the “universe” (g,M) at the “instant of
time” Σ × {σ(k)}[14]. This cosmological interpretation of the mean curvature k
(or better of −k

3 ) motivates the terminology of various notions that we describe in
what follows. Consider a CMC slice Σ × {σ}. At that slice the Hubble parameter
is thus H = e−σ

3 . For this particular value of H scale g as H2g. As it is easy to see,
the state (g,K) over the slice Σ×{σ} scales to the new state (g̃, K̃) = (H2g,HK).
In this way the Hubble parameter of the new solution H2g and over the same
slice will be equal to one. A state (g̃, K̃) with H = 1 (or k = −3) will be called
a cosmologically normalized state. The flow (g̃, K̃)(σ) = (H2(σ)g(σ),H(σ)K(σ))
will be called the cosmologically normalized Einstein CMC flow2 Note that the
volume of Σ relative to the metric g̃ is given by V(σ) = H3(σ)Volg(σ)(Σ). We will
call it the reduced volume. It is a crucial and central fact observed by Fischer and
Moncrief [8] that V is monotonically decreasing along the expanding direction and

it is bounded below by the topological invariant
(− 1

6Y (Σ)
) 3

2 . The reduced volume
is a weak quantity but its relevance is greatly enhanced if we take into account
at the same time the L2

g̃ norm of the space–time curvature Rm relative to the
CMC slices, namely the Bel–Robinson energy Q̃0 = Q0((g̃, K̃)). Our first result in
Sect. 2 will be to show that, assuming a uniform bound in Q̃0, the ground state
of the manifold Σ is well defined and unique. In a geometric sense the ground
state is equivalent to the Thurston geometrization of Σ. Let us be more precise
on the definition of ground state (under a bound in Q0) and its characterization.
By ground state we mean “the limit” (to be described below) of any sequence of
cosmologically normalized states {(g̃i, K̃i)} with Q0((g̃i, K̃i)) ≤ Λ (Λ is a positive
constant) and Vi ↓ Vinf . As is shown in the appendix, for any CMC state (g,K)
the L2

g-norm of Ric is controlled by |k|, Q0 and V and precisely by

‖Ric‖2
L2

g
≤ C(|k|V + Q0),

where C is a numeric constant. It follows that the Ricci curvature of the sequence
{g̃i} is uniformly bounded in L2

g̃i
. Thus [1], one can extract a subsequence of

{(Σ, g̃i)} converging in the weak H2-topology to a (non-necessarily complete)
Riemannian manifold (Σ∞, g∞). We prove that the limit space (Σ∞, g∞) belongs

2 Cosmologically normalized flows have been considered in [5] by Andersson and Moncrief. Note
however that the terminology Cosmologically normalized has been introduced in [15].
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to one among three possibilities (independently of the sequence {(gi,Ki)}). In
general terms (see Sect. 2.1 for a more elaborate description of the ground state)
the three cases are:
1. (Called Case Y (Σ) = 0), Σ∞ = ∅;
2. (Called Case Y (Σ) < 0 (I)), Σ∞ = H is a hyperbolic manifold and g∞ = gH

(where gH is the hyperbolic metric in Σ∞);
3. (Called Case Y (Σ) < 0 (II)), Σ∞ = ∪i=n

i=1Hi where {Hi} is a finite set of
(non-compact) complete hyperbolic metrics of finite volume. The limit metric
g∞ over each Hi is equal to gH,i (where gH,i is the hyperbolic metric of Hi).
The two-tori transversal to the hyperbolic cusps of each manifold Hi embed
uniquely (up to isotopy) and incompressibly (the π1 injects) in Σ.

In the second and third cases Ki converges to −gH,i weakly in H1. One can also
describe the notion of ground state in terms of geometrizations. This viewpoint will
be fundamental in Sect. 3. Recall that for any Riemannian space (Σ, g) the ε-thick
(thin) part Σε (Σε) of Σ is defined as the set of points p in Σ where the volume
radius3 ν(p) is bigger (less) or equal than ε. Say now that {g̃(σ)} is a continuous
(σ ∈ [σ0,∞)) or discrete (σ ∈ {σ0, σ1, . . .}) family of Riemannian metrics on Σ.
We say that {(Σ, g̃(σ))} persistently geometrizes4 Σ iff there is ε(σ) > 0 such that
Σε(σ)

g̃(σ) is persistently diffeomorphic to either, the empty set, or, the ε(σ)-thick part
of a single compact hyperbolic manifold ((H, g̃H)), or, the ε(σ)-thick part of a finite
set of (non-compact) complete hyperbolic metrics of finite volume (∪i=n

i=1 (Hi, g̃H,i)).
The ε(σ)-thin parts Σg̃(σ),ε(σ) on the other hand are persistently diffeomorphic to
either, the empty set, or, a single graph manifold (G), or, a finite set of graph man-
ifolds with toric boundaries (∪i=n

i=1Gi). In quantitative terms {g̃(σ)} geometrizes Σ
iff either
1. ν g̃(σ)(Σ) → 0 as σ goes to infinity (in which case there is only one persistent

G piece) or
2. ν g̃(σ)(Σ) ≥ ν0 > 0 as σ goes to infinity (in which case there is only one per-

sistent H piece) and there is a continuous function ϕ : (σ0,∞) × H → Σ,
differentiable in the second factor, such that ‖ϕ∗g̃(σ)− g̃H‖H2

g̃H
→ 0 as σ goes

to infinity, or
3. the volume radius collapses in some regions and remains bounded below in

some others (in which case there are a set of G pieces G1, . . . , Gj and a set of
H pieces H1, . . . , Hk) and for any ε > 0 and for any H piece (Hi, g̃Hi) there
is a continuous function ϕi : (σ0,∞) × Hε

i → Σ, differentiable in the second
factor such that ‖ϕ∗

i g̃(σ) − g̃Hi‖H2
g̃Hi

→ 0 as σ goes to infinity.

It is clear that cases 1, 2 and 3 above correspond, respectively, to the three possible
cases (1, 2 and 3) of ground states defined before.

3 Given a point p in Σ the volume radius ν(p) at p is defined as the supremum of all r > 0 such
that Vol(B(p, r)) ≥ μr3 for some fixed (but arbitrary) μ > 0. We define ν = infp∈Σν(p) and

ν = supp∈Σν(p). We will be using these definitions later.
4 We have taken this terminology from [11, Sect. 10].
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Figure 1. A schematic representation of the double cusp ground
state.

While it is easy to give examples of ground states of the type Case Y (Σ) = 0
and Case Y (Σ) < 0 (I) (see Sect. 2.2) an example of the type Case Y (Σ) < 0
(II) is more difficult to find. We dedicate Sect. 6 to describe a ground state of this
type. The new ground state, that we shall call Double Cusp, consists of a fam-
ily {Σ, (g̃l, K̃l)} that we describe in what follows. The manifold Σ is of the form
Σ = H1�G�H2 where Hi, i = 1, 2 are (non-compact) hyperbolic manifolds with a
hyperbolic cusp each5 and the manifold G is a so called torus neck G = [−1, 1]×T 2.
The family {(g̃l, K̃l)} is parametrized by the metric “length” l of the neck. As
l → ∞ the geometrization takes place. More precisely, as the length l of G becomes
infinite, the volume radius ν(G) over G and the total volume of G collapse to zero.
Over the hyperbolic sector H1, H2 instead, the metric gl converges to gH1 and gH2

respectively and in H2. A schematic picture can be seen in Fig. 1.
The third part of the article (Sect. 3) deals with the long-time evolution

of the cosmologically normalized Einstein flow under the assumption that the
zero and the first order Bel–Robinson energies remain uniformly bounded, namely
Ẽ1 = Q0((g̃, K̃)) + Q1((g̃, K̃)) ≤ Λ for a positive constant Λ. The main result will
be to show that a long-time flow (g̃, K̃)(σ) with Ẽ1 ≤ Λ, persistently geometrizes
the manifold Σ. Moreover, the geometrization is the ground state if V ↓ Vinf . Using
the classification of ground states (Theorem 3) it is direct to show that ground
states are stable in the following sense. For any Λ there is ε > 0 such that any
long-time cosmologically normalized flow (g̃, K̃)(σ) with Ẽ1 ≤ Λ and initial data
(g̃(σ0, K̃(σ0)) with V(σ0) − Vinf ≤ ε the flow converges to the ground state in the
long time (in the sense of geometrizations). This result is not known in general if
one drops the a priori (strong) assumption of a uniform bound on Ẽ1. However, it
was proved by Andersson and Moncrief [5] that if an initial data (g̃(σ0), K̃(σ0)) is

5 The construction can be easily generalized to include hyperbolic manifolds with any number
of cusps.
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close enough in H3 ×H2 to a ground state (H, (gH ,−gH)) of type Case Y (Σ) < 0
(I), then Ẽ1 converges to zero when σ → ∞ and V ↓ Vinf , thus showing stability.
We will give a proof of this fact in slightly more geometrical terms. The core of
the proof is however the same.

Finally, in Sect. 4 we present some arguments favoring the statement that
a cosmologically scaled long-time CMC flow with Ẽ1 uniformly bounded decays
necessarily to its ground state.

The problem of the long-time geometrization of the Einstein flow was inves-
tigated by Anderson in the seminal work [4]. In that article, long-time geometri-
zation (at a particular scale) was established under suitable a priori point-wise
bounds on the rescaled space–time curvature (see [4] for a detailed statement).
More precisely, it was shown that the flow geometrizes along (some) sequence of
diverging times. The problem of whether the geometrization persists or not, and a
careful analysis of the collapsed regions remained open. Further progress on these
problems was done in [15], where it was possible to show that under a priori Cα

point-wise bounds on the cosmological normalized space–time curvature, the flow
(at the cosmological scale) persistently geometrizes and the volume of the G (or
thin) regions decreases to zero. An important open problem is whether the two-
tori, separating the H (or thick) regions and G (or thin) regions are incompressible
or not. A positive answer would imply that the geometrization is unique, that coin-
cides with the Thurston geometrization and that the reduced volume approaches
its absolute infimum in the long-time (see [15] for a discussion). The present article
discusses the problem of the long-time geometrization under, instead, a priori inte-
gral bounds on the cosmologically normalized space–time curvature and its time
derivative. These integral norms (the Bel–Robinson energies Q̃0 and Q̃1) represent
variables which go more in the spirit of general relativity, if we think (at least for-
mally) the Einstein equations as a hyperbolic PDE. The analysis of the Einstein
flow under a priori bounds on Q̃0 + Q̃1 is, in comparison with point-wise bounds
on R̃m and ∇T R̃m, a task of much greater complexity. Finally let us note that
the idea of linking the reduced volume to geometrizations was first pointed out
and investigated in a series of articles by Fischer and Moncrief (see for instance
[8]). The reference [15] and the present work owe much to them.

1.1. Background

We summarize now some basic formulae that will be used. The reader is encour-
aged to read [7] from which most of the material of this section is taken (see also
[16] for related material). Let us assume we have a cosmological solution6 (M,g)
with generic Cauchy hypersurface diffeomorphic to Σ. Assume Σ is a compact
three-manifold with non-positive Yamabe invariant Y (Σ). Assume too that there
is a CMC foliation Σ× [k0, 0) inside7 M, where k is the mean curvature. A solution

6 Following Bartnik a cosmological solution of the Einstein equations is a maximally globally
hyperbolic solution having a compact space-like Cauchy hypersurface.
7 Not necessarily covering the future of M.
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having such foliation will be called a long-time CMC solution.8 With respect to
the CMC foliation the metric g splits into a space-like metric g, a lapse N and a
shift X. We recover the metric g from them by

g = −(N2 − |X|2)dk2 + X∗ ⊗ dk + dk ⊗ X∗ + g,

where X∗ = gabX
a. The Einstein CMC equations in the CMC gauge (and for an

arbitrary shift) are

R = |K|2 − k2, (1)
∇.K = 0, (2)

ġ = −2NK + LXg, (3)

K̇ = −∇∇N + N(Ric + kK − 2K ◦ K) + LXK, (4)
−ΔN + |K|2N = 1, (5)

where K is the second fundamental form, (K ◦ K)ab = K c
a Kcb and LX is the Lie

derivative operator along the vector field X. Sometimes we will need to use these
formulas in terms of the cosmologically normalized quantities g̃ = H2g, K̃ = HK
and Ñ = H2N . They will be provided without further deductions.

The expressions for the derivative of the reduced volume with respect to log-
arithmic time will be central in Sect. 3. It is convenient to write them right away
in terms of cosmological normalized quantities. They are

dV
dσ

= −3
∫

Σ

1 − 3Ñdvg̃ = −
∫

Σ

Ñ | ˆ̃K|2g̃dvg̃.

where the hat Â of a two tensor A denotes its traceless part Â = A − trgA
3 g. The

expression φ = 3Ñ − 1 is the so called Newtonian potential and it is sometimes a
better quantity to work rather than the lapse N .

Let us give now the basic elements of Weyl fields and Bel–Robinson energies.
Again in this case the reader is encouraged to read the reference [7] for a complete
account. A Weyl field is a traceless (4, 0) space–time tensor field having the sym-
metries of the curvature tensor Rm. We will denote them by Wabcd or simply W.
As an example, the Riemann tensor in a vacuum solution of the Einstein equations
is a Weyl field that we will be denoting by Rm = W0 (we will use indistinctly
either Rm or W0). The covariant derivative of a Weyl field ∇XW for an arbitrary
vector field X is also a Weyl field. We will be using the Weyl fields W0 = Rm
and W1 = ∇T Rm, where T is the future pointing unit normal field to the CMC
foliation.

Given a Weyl tensor W define the current J by

∇aWabcd = Jbcd,

8 The terminology is justified by the fact that if the manifold Σ has non-positive Yamabe invari-
ant then the range of k (which is known to be a connected interval of the real line) cannot contain
zero. If Y (Σ) ≤ 0 it is conjectured that the range of k is actually (−∞, 0).
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When W is the Riemann tensor in a vacuum solution of the Einstein equations
the currents J is zero due to the Bianchi identities.

The L2-norm of a Weyl field W with respect to the foliation will be intro-
duced through the Bel–Robinson tensor which is defined by

Qabcd(W) = WalcmW l m
b d + W∗

alcmW∗ l m
b d .

The Bel–Robinson tensor is symmetric and traceless in all pairs of index and for
any pair of time-like vectors T1 and T2, the quantity9 QabcdT

a
1 T b

2T c
3T d

4 is positive
(provided W �= 0).

The electric and magnetic components of W are defined as

Eab = WacbdT
cT d, (6)

Bab =∗ WacbdT
cT d, (7)

where the left dual of W is defined by ∗Wabcd = 1
2εablmWlm

cd. E and B are
symmetric, traceless and null in the T direction. It is also the case that W can
be reconstructed from them (see [p. 143] [7]). If W is the Riemann tensor in a
vacuum solution we have

Eab = Ricab + kKab − K c
a Kc

b, (8)

ε l
ab Blc = ∇aKbc − ∇bKac. (9)

The components of a Weyl field with respect to the CMC foliation are given by
(i, j, k, l are spatial indices)

WijkT = −ε m
ij Bmk, ∗WijkT = ε m

ij Emk, (10)

Wijkl = εijmεklnEmn, ∗Wijkl = εijmεklnBmn. (11)

We also have

QTTTT = |E|2 + |B|2,
QiTTT = 2(E ∧ B)i,

QijTT = −(E × E)ij − (B × B)ij +
1
3
(|E|2 + |B|2)gij .

The operations × and ∧ are provided explicitly later. The divergence of the Bel–
Robinson tensor is

∇aQ(W)abcd = W m n
b d J(W)mcn + W m n

b c J(W)mdn

+∗Wm n
b d J∗(W)mcn +∗ Wm n

b c J∗(W )mcn.

where J∗
bcd = ∇a(∗Wabcd). We have therefore

∇αQ(W)αTTT = 2Eij(W)J(W)iT j + 2BijJ∗(W)iT j . (12)

We will denote

Q(W) =
∫

Σ

QTTTT (W)dvg =
∫

Σ

|E(W)|2 + |B(W)|2dvg,

9 We will later use the notation QabcdT a
1 T b

2 T c
3 T d

4 = QT1T2T3T4 .
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and in particular when W = W0 or W = W1 we will denote Q0 = Q(W0) and
Q1 = Q(W1). From the Eq. (12) we get the Gauss equation

Q̇(W)=−
∫

Σ

2NEij(W)J(W)iT j +2NBij(W)J∗(W)iT j +3NQabTT Πabdvg.

(13)

Πab = ∇aTb is the deformation tensor and plays a fundamental role in the space–
time tensor algebra. Its components are

Πij = −Kij , ΠiT = 0,

ΠTi =
∇iN

N
, ΠTT = 0.

Finally, we have

divE(W)a = (K ∧ B(W))a + JTaT (W), (14)
divB(W)a = −(K ∧ E(W))a + J∗

TaT (W), (15)

curlBab(W)= E(∇T W)ab+
3
2
(E(W) × K)ab− 1

2
kEab(W)+JaTb(W), (16)

curlEab(W)= B(∇T W)ab+
3
2
(B(W) × K)ab− 1

2
kBab(W)+J∗

aTb(W). (17)

The operations ∧, × and the operators Div and Curl are defined through

(A × B)ab = ε cd
a ε ef

b AceBdf +
1
3
(A ◦ B)gab − 1

3
(trA)(trB)gab,

(A ∧ B)a = ε bc
a A d

b Bdc,

(div A)a = ∇bA
b
a,

(curl A)ab =
1
2
(ε lm

a ∇lAmb + ε lm
b ∇lAma).

In what follows we describe the main results that will be used from the
theory of convergence–collapse of Riemannian manifolds under L2-bounds on the
Ricci curvature and its covariant derivatives. The reader can consult (some of) the
original sources [1,17,18]. Let us mention first a classical local result. Recall that
in a Riemannian manifold (Σ, g) the Hi-harmonic radius ri(p) of g at p, i ≥ 2, is
defined as the supremum of the radius r for which there is a coordinate chart {x}
covering B(p, r) and satisfying

3
4
δjk ≤ gjk ≤ 4

3
δjk, (18)

α=i∑

α=2

r2α−3

⎛

⎜
⎝

∑

|I|=α,j,k

∫

B(o,r)

∣
∣
∣
∣

∂I

∂xI
gjk

∣
∣
∣
∣

2

dvx

⎞

⎟
⎠ ≤ 1, (19)

where in the sum above I is the multi-index I = (α1, α2, α3), and as usual
∂I/∂xI = (∂x1)α1(∂x2)α2(∂x3)α3 . Both expressions above are invariant under the
simultaneous scaling g̃ = λ2g, x̃μ = λxμ and r̃ = λr. Observe that if j > i ≥ 2
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then rj(p) ≤ ri(p). A chart {x} as above will be called a canonical harmonic
chart. In basic terms the Hi-harmonic radius marks the greatest scale λ in which
the Hi

{x}-Sobolev norm of the scaled metric λ2g (in the ball of radius one of the
scaled metric) is bounded above by one.

We have used the notation Hi
{x} for the Hi-Sobolev space defined with respect

to a chart {x}. Instead Hi
g will be the Hi

g-Sobolev space defined with respect to
the metric g, namely for a tensor A (of any rank) we define

‖A‖2
Hi

g(Ω) =
∫

Ω

j=i∑

j=0

|∇(j)A|2dvg,

where Ω is a given region in Σ where the Sobolev space is defined (so properly
speaking we would write Hi

g(Ω)).

Theorem 1. Let (Σ, g) be a complete Riemannian three-manifold and let p be a
point in Σ. Then
1. ‖Ric‖2

L2
g

and ν(p) control the H2-harmonic radius r2(p) of g at p from below.

2. ‖Ric‖2
H1

g
and ν(p) control the H3-harmonic radius r3(p) of g at p from below.

A more complex global result is10

Theorem 2. Let {(Σ, gi)} be a sequence of compact Riemannian manifolds with

‖Ric‖L2
gi

+ V olgi
(Σ) ≤ Λ,

where Λ is a positive constant. Then one can extract a sub-sequence (to be denoted
also by {(Σ, gi)}) with one of the following behaviors.
(1) (Collapse). νi → 0 and the sub-sequence gi collapses along a sequence of

F-structures. The manifold Σ is in this case a graph manifold.
(2) (Convergence). νi ≥ ν0 > 0 and {(Σ, {gi})} converges weakly in H2 to a H2

Riemannian manifold (Σ∞(= Σ), g∞).
(3) (Convergence–Collapse). νi → 0 and νi ≥ ν0 > 0 and {(Σ, gi)} con-

verges weakly in H2 to a (at most) countable union ∪α(Σ∞,α, g∞,α) of H2

(non necessarily complete) Riemannian manifolds. Moreover, for a given
ε (sufficiently small) the manifolds Σgi,ε are graph manifolds with toric
boundaries. The Riemannian-manifolds {(Σε

gi
, gi)} converge weakly in H2 to

∪α(Σε
∞,α, g∞,α) (which has only a finite number of components).

The notion of convergence that we have assumed in the statement of the
theorem is the following: we say that {(Σ, gi)} converges weakly in H2 to a limit
Riemannian manifold (Σ∞, g∞) (as above) if for every ε > 0 there are (H3)-dif-
feomorphisms ϕi : Σε

∞,g∞ → Σε
gi

such that ϕ∗
i gi converges to g∞ in the weak

10 For a discussion of this result see [1]. We will not elaborate on the notion of F structure as
we will not need in the present article. A graph manifold is, roughly speaking a sum along two
tori, of U(1)-bundles over two-surfaces. For a discussion of the relation between graph manifolds
and F structures see [1].
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H2-topology induced by the metric g∞ over the space of H2 (2,0)-tensors (over
Σ∞).

The use of Weyl fields to control the gravitational field would not be justified
in this article if it were not for the following fundamental property.

Proposition 1. Let (g,K) be a cosmologically normalized state on a three-manifold
Σ with non-negative Yamabe invariant (Y (Σ) ≤ 0) and let p be a point in Σ. Then

1. ν(p), Q0 and V olg(Σ) control from below the H2-harmonic radius r2(p) of g
at p. Moreover if {x} is a canonical harmonic coordinate system the Sobolev
norm ‖K‖H1

{x}(B(p,r2(p)) is controlled from above.
2. ν(p), Q0 +Q1 and V olg(Σ) control from below the H3-harmonic radius r3(p)

of g at p. Moreover if {x} is a canonical harmonic coordinate system the
Sobolev norm ‖K‖H2

{x}(B(p,r3(p)) is controlled from above.

In basic words what the (say item 2 of the) Proposition claims is that the quantity
1/ν(p) + Q0 + Q1 + Volg(Σ) controls r3(p) from below and the H2

{x} × H1
{x} norm

of (g,K) from above, in suitable canonical harmonic coordinates {x} covering
B(p, r3(p)).

The proof of Proposition 1 item 1 follows easily from the bound

⎛

⎝
∫

Σ

|Ric|2 + |∇K|2 + |K|4dvg

⎞

⎠

1
2

≤ C(Volg(Σ) + Q0),

that is proved in the appendix (C is a numeric constant) and by applying
Theorem 1. The proof of the item 2 in the Proposition 1 follows by using item
1 and applying standard elliptic estimates in the elliptic system (14)–(17) with
E = E(W0) and B = B(W0) on the left-hand side and then using Eqs. (8) and
(9). Details of this argument can be found in [16]. The estimates of Proposition 1
will be referred later simply as “elliptic estimates”.

2. The Ground State and Examples

2.1. The Ground State

Theorem 3. (The ground state) Let Σ be a compact three-manifold with Y (Σ) ≤ 0.
Say {(gi,Ki)} is a sequence of states satisfying

(1) ki = −3;

(2) Vi ↓ Vinf =
(

−1
6
Y (Σ)

) 3
2

;

(3) Q0((gi,Ki)) ≤ Λ,
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where Λ is a fixed constant. Then, there is a sub-sequence of {(gi,Ki)} (to be
denoted also by {(gi,Ki)}) for which one and only one of the following three phe-
nomena occurs.

Case Y (Σ) = 0.
1. Σ = G is a graph manifold.
2. ν → 0 and the Riemannian spaces (Σ, gi) collapse with bounded L2 curvature,

along a sequence of F-structures.
3. Vi ↓ Vinf = 0
Case Y (Σ) < 0 (I).
1. Σ = H is a compact hyperbolic manifold (denote its hyperbolic metric by gH).
2. (Σ, gi) → (Σ, gH) in the weak H2-topology.

3. Vi ↓ V olgH
=

(− 1
6Y (Σ)

) 3
2 .

Case Y (Σ) < 0 (II).
1. There is a set of incompressible two-tori {T 2

i , i = 1, . . . , iT } embedded in Σ
and cutting it into a set {Hi, i = 1, . . . , iH} of manifolds admitting a complete
hyperbolic metric of finite volume (in its interior) and a set {Gi, i = 1, . . . , iG}
of graph manifolds. The tori T 2

i are unique up to isotopy.
2. (Σ, gi) → ∪i=iH

i=1 (Hi, gH,i) in the weak H2-topology.

3. Vi ↓ ∑i=iH

i=1 V olgH,i
(Hi) =

(− 1
6Y (Σ)

) 3
2 .

In each of the three cases above the norms ‖Ricgi
‖L2

gi
, ‖Ki‖H1

gi
, and ‖Ki‖L4

gi

remain uniformly bounded and the norms ‖K̂i‖L2
gi

, ‖Rgi
+ 6‖L1

gi
converge to zero.

Moreover in the regions of convergence (the hyperbolic sector in (I) and (II)) the
scalar curvature Rgi

converges in the strong L2-topology to −6.
Finally, two different sub-sequences of the original sequence {(gi,Ki)} as

above have the same behavior.

Proof. We will make use of a number of inequalities proved in the Appendix. From
Proposition 10 we have

∫

Σ

2|∇K̂|2 + |K̂|4dvg ≤ C(|k|(V − Vinf) + Q0), (20)

and from Proposition 11
∫

Σ

|k|2|K̂|2dvg ≤ C(|k|(V − Vinf) + (|k|(V − Vinf)Q0)
1
2 ). (21)

This in particular implies the inequality
∫

Σ

|k|2
(

Rg +
2
3
k2

)
dvg ≤ C(|k|(V − Vinf) + (|k|(V − Vinf)Q0)

1
2 ). (22)

From Proposition 12 we have

‖R̂ic‖L2
g

≤ C
(|k|(V − Vinf) + (|k|(V − Vinf)Q0)

1
2 + Q0

)
. (23)
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and from Proposition 13 also in the Appendix
∫

Σ

|∇R| 4
3 + R2dvg ≤ C(|k|V + Q0). (24)

Recall that when using the formulae above we will be dealing with a sequence
{(g̃i, K̃i)} with ki = −3.

Case Y (Σ) = 0. From (23) we see that the L2
gi

norm of Ricgi
remains uni-

formly bounded. This case then follows from Theorem 2.
Case Y (Σ) < 0. First we note that there must be a constant ν0 > 0 such

that νi ≥ ν0 otherwise one can extract a sub-sequence of {gi} which collapses
with bounded volume and curvature. Theorem 2 then implies that Σ is a graph
manifold and therefore of zero Yamabe invariant which is a contradiction. Cases
(I) and (II) will be distinguished according to whether there is a sub-sequence of
{gi} with νi → 0 or not. We do that below.

(I). Suppose there exists ν0 > 0 such that νi ≥ ν0. Then by Theorem 2 we can
extract a sub-sequence of {gi} converging in the weak H2-topology to a compact
Riemannian manifold (Σ, g∞). From (22) we deduce that Rg∞ = −6. Let us see
that g∞ is hyperbolic. Note that

∫
Σ

R2
g∞dvg∞ = |Y (Σ)|2. Consider the quadratic

functional R from H2-metrics into the reals given by

g → Volg(Σ)
1
3

∫

Σ

R2
gdvg.

It is known [2] that if Y (Σ) < 0 the infimum of R is given by |Y (Σ)|2. Thus it must
be δR|g∞ = 0. Let us compute the variation of R at g = g∞ and for variations
which preserve the local volume. Consider then an arbitrary path of metrics g(λ)
with g(λ = 0) = g∞ and (dvg(λ))′ = 0 (and Frechet derivative g′ = h in H2). From
(dvg)′ = 0 we get trgh = 0. Recall that the variation of the scalar curvature is
given by

δhRg = Δtrgh + δδh − 〈Ric, h〉.
From this we get

δhRg|g=g∞ = −Vol
1
3
g∞2R∞

∫

Σ

〈R̂icg∞ , h〉dvg∞ .

Thus, R̂icg∞ = 0 and g∞ is hyperbolic. Therefore this case corresponds to Case
Y (Σ) < 0 (I).

(II). Suppose lim sup νi = 0. Consider a H2-weak limit of (Σ, gi). Denote it
by (Σ∞, g∞). Recall that Σ∞ may have infinitely many connected components and
that g∞ may not be complete on them. Note that Σ∞ is non-empty as we have
νi ≥ ν0 > 0. For every i consider the metric gY,i in the conformal class of gi with
scalar curvature RY = −6. Writing gY,i = φ4

i gi, the conformal factor φi satisfies
the equation

RY φ5
i = −8Δgi

φi + Rgi
φi. (25)
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From the maximum principle we get φi ≤ 1. Thus

0 ≤ Volgi
(Σ) − VolgY,i

(Σ) ≤ Volgi
(Σ) − Volinf .

It follows from the fact that Vi ↓ Vinf that

0 ≤
∫

Σ

1 − φ6
i dvgi

→ 0.

and in particular
∫
Σ
(1 − φi)6dvgi

→ 0. Note that

Vol
1
3
gY,i

∫

Σ

R2
gY,i

dvgY,i
→ |Y (Σ)|2.

We will exploit this fact in what follows. Pick an arbitrary point p ∈ Σ∞. We will
show that R̂icg∞ |B(p,νg∞ (p)/2) = 0. As the point p is arbitrary this would show that
R̂icg∞ = 0 and thus g∞ is hyperbolic. First note that by (22) it is Rg∞ = RY = −6.
Also by (24) and the compact embedding H1,4/3 ↪→ L2 we see that Rgi

→ RY

strongly in L2 on compact sets of Σ∞. Pick a sequence {pi} of points pi ∈ Σ
such that (Bgi

(pi, νgi
(pi)), pi, gi) converges to (Bg∞(p, νg∞(p)), p, g∞). Let us write

Eq. (25) in the form

8Δgi
φi = Rgi

φi − RY φ5
i , (26)

and prove that the right hand side of it is converges to zero in L2 and over the
sequence of balls Bgi

(pi, νgi
(pi)) (denote them by Bi). Write

∫

Bi

|RY φ5
i − Rgi

φi|2dvgi
≤

∫

Bi

|RY φ4
i − Rgi

|2dvgi

≤
∫

Bi

2|RY |2|φ4 − 1|2 + 2|RY − Rgi
|2dvgi

. (27)

We have ∫

Bi

|φ4
i − 1|2dvgi

≤
∫

Bi

|φ4
i − 1|dvgi

→ 0,

From this and the fact that Rgi
converges to RY strongly in L2 over Bi we have

that the right-hand side of Eq. (27) goes to zero as claimed. By elliptic regularity
‖φi − 1‖H2

gi
(Bgi

(pi,
2
3 νgi

(pi)) converges to zero. As a result (Bgi
(pi,

2
3νgi

(pi), pi, gY,i)

converges weakly in H2 to (Bg∞(p, 2
3νg∞(p)), p, g∞). As a consequence we have

that ∫

Σ

〈R̂icgY,i
, hi〉gY,i

dvgY,i
→

∫

Σ∞

〈Ricg∞ , h〉g∞dvg∞ ,

for any traceless tensor h (in H2) with support in Bg∞(p, νg∞(p)/2) and traceless
tensors hi (in H2) with support in Bgi

(pi, νgi
(pi)/2) converging strongly in H2 to

h. Thus, δhi
R|g=gY,i

→ δhR|g=g∞ . Therefore, if R̂icg∞ �= 0 in Bg∞(p, νg∞(p)/2)
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we can lower the infimum of |Y (Σ)|2 for the functional R over the three-manifold
Σ.

We prove now that g∞ is complete. Let s be an incomplete geodesic in Σ∞.
Fix p ∈ s. Let S2 be a transversal geodesic-two-simplex in Σ∞ and having p in its
interior. For q ∈ s (in the incomplete direction and close to p) consider the three-
simplex S3(q) formed by all geodesics joining q with a point in S2. Observe that
because (Ω, g∞) is hyperbolic and s has finite length (in the incomplete direction)
every r ∈ ∂S3(x) has a cone C3(r) inside and of size bounded below.11 Now as q
approaches the end of s, we can find a sequence of points qi and r(qi) ∈ ∂S3(qi)
with νg∞(r(qi)) → 0 and having a cone inside S3(r(qi)) of size bounded below.
The blow up limit of the pointed space (Σ∞, r(qi), 1

ν(r(qi))2
g∞) has ν(x) = 1 and

is complete, flat and having a cone of size (α,∞) inside. It must be R
3 which is a

contradiction.
We can conclude then that Σ∞ consist of a finite number of connected com-

ponents Hi, i = 1, . . . , iH each one admitting a complete hyperbolic metric of
finite volume gH,i = g∞. Observe that it must be Volg∞(Σ∞) = Volinf (and not
strictly less than Volinf) for otherwise (see [6]) one can find a sequence of metrics
˜̃gi in Σ and with bounded L∞

˜̃gi
curvature, converging to ∪i=iH

i=1 (Hi, gH,i) and with
Volg̃i

(Σ) → Volg∞(Σ∞) and thus lowering the value |Y (Σ)|2 for the infimum of R.
Now, pick a transversal torus for each one of all the hyperbolic cusps of the

Riemannian manifolds (Hi, gH,i). Denote them by {Ti, i = 1, . . . , i = iT }. Each
one of the tori Ti can be embedded (up to isotopy) inside Σ. As proved in [3,
Theorem 2.9] if one of the tori is compressible one can again lower the infimum
value for R. Thus, the tori Ti are all incompressible. As shown in [3, p. 156] the
set of tori {Ti, i = 1, . . . , iT } (of a strong geometrization as this) is unique up to
isotopy.

The rest of the claims in the Theorem follow from Eqs. (20)–(24). �

2.2. Examples

Examples of ground states (namely sequences {(gi,Ki)} of cosmologically normal-
ized states with Vi ↓ Vinf and Q0 ≤ Λ) and of the types Case Y (Σ) = 0 or Case
Y (Σ) < 0 (I) (in Theorem 2.1) are easy to find. We will show that soon below. An
example of a ground state of the type Case Y (Σ) < 0 (II) is more difficult to find
and will be discussed in a separate section (Sect. 6).

Case Y (Σ) = 0. Take any two-surface Σgen of genus greater or equal than
one. Consider the three-manifold Σ = Σgen × S1. Denote by l2ds2 the metric on
S1 with total length l and denote by ggen a metric on Σgen of scalar curvature −6.
An example of a ground state of the type Case Y (Σ) = 0 is given by the sequence
of states {(gl,−gl)} on Σ where gl = ggen × l2ds2 and l → 0.

11 Given a point x in a Riemannian manifold (Σ, g) a cone of size (α, l) (l < injxg) in Σ is the
image under the exponential map of a cone of size (α, l) (segments from x in TxΣ having length
l and forming an angle α with a given segment).
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Case Y (Σ) < 0 (I). Take any compact hyperbolic manifold Σ with hyperbolic
metric gH . The constant sequence of states {(gH ,−gH)} is an example of a ground
state of type Case Y (Σ) < 0 (I).

2.3. The Double Cusp

Say (H1, gH1) and (H2, gH2) are two complete hyperbolic metrics of finite volume
and suppose that each one has, for the sake of concreteness, only one hyper-
bolic cusp. Denote the cusps as C1 and C2. Denote by (gHi

,−gHi
) the flat cone

states on Hi, i = 1, 2. Recall that the metrics gHi
on the cusps are of the form

gHi
= dx2 + e2xgT,i where gTi

is a flat (and x-independent) metric on the tori T 2

transversal to the cusps (−∞, a]×T 2. Consider now a torus-neck, namely the man-
ifold G = [−l, l] × T 2 with a T 2-invariant metric gG. For any x0 < a we will find a
state (gG,KG) on G which, at the boundary ∂[−l, l] × T 2 = {−l} × T 2 ∪ {l} × T 2,
approximates to any given desired order the flat cone states of H1 and H2 at
x = x0. Once this is done we will glue (gH1 ,−gH1), (gG,KG) and (gH2 ,−gH2) to
get an state over H1�G�H2 (satisfying the constraints equations). As x0 → −∞
these “double cusp” states display the behavior of a ground state of type Case
Y (Σ) < 0 (II). A schematic picture can be seen in Fig. 1. Note that the states
(gG,KG), being T 2-symmetric, are Gowdy and therefore explicitly tractable.

The construction is organized as follows. In Sect. 2.3.1 we find a (Gowdy)
polarized space–time solution on R×R×T 2. Once this is done, we find in Sect. 2.3.3
a foliation of R × R × T 2 the states of which display (when suitable normalized)
a convergence–collapse behavior of the type Case Y (Σ) < 0 (II). Although the
states found in this foliation are not CMC, we will see in Sect. 2.3.5 that it is
possible to find a CMC foliation the CMC states of which are not far from those
found before and displaying the same convergence–collapse behavior. In Sect. 2.3.4
we find (Gowdy) non-polarized space–time solutions on R×R×T 2. One can then
repeat the analysis done in Sects. 2.3.3 and 2.3.5 to find, for each space–time non-
polarized solution, a CMC foliation displaying a convergence–collapse picture of
the type Case Y (Σ) < 0 (II). The family of polarized states that we will con-
struct is sufficient to join two arbitrary flat cone cusp sates (C1, (gH1 ,−gH1)) and
(C2, (gH2 ,−gH2)). Suppose now we have two flat cone states (Hi, (gHi

,−gH2)) hav-
ing a hyperbolic cusp each that we want to join through a state in a torus-neck.
Having fixed x0 and a given error ε, suppose we have found a state (polarized or
not) (gG,KG) in a torus-neck G, which is compatible (up to the error ε) at its
ends with the flat cone cusps (C1, (gH1 ,−gH1)) and (C2, (gH2 ,−gH2)) at x = x0.
We will perform the gluing of (H1, (gH1 ,−gH1)), (gG,KG) and (H2, (gH2 ,−gH2))
as follows. First, we glue (keeping the T 2-symmetry) the metrics gHi

, i = 1, 2 and
gG on an interval ([a, b] × T 2) of length one in each one of the necks and centered
at x = x0. Denote the new metric by g�. Then we find a transverse traceless tensor
K̂TT with respect to g� and equal to −gHi

or KG outside the intervals where the
metrics were glued. Using the data (g�, K̂TT ) we appeal to a Theorem of Isenberg
[12] to show that in the conformal class of the state (g�, K̂TT ) the Lichnerowicz
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equation can be solved and therefore a CMC state found. Finally, we use stan-
dard elliptic estimates to show that if the error ε is small enough the CMC state
constructed with the conformal method is as close to the states (gHi

,−gHi
) and

(gG,KG) (in their respective domains) as we like.

2.3.1. The Geometry on a Torus Neck (the Polarized Case). On R × R × T 2 we
look for a (polarized) T 2-symmetric space–time metric in the coordinates where it
looks like

g = e2a(−dt2 + dx2) + Re2W dθ2
1 + Re−2W dθ2

2.

The functions a, R, W depend on (t, x). Define the coordinates (−,+) = (t −
x, t + x). Derivatives with respect to − and + will be denoted with a subscript +
or −. In this representation the Einstein equations are equivalent to the system of
scalar equations

∂2R

∂x2
− ∂2R

∂t2
= 0, (28)

∂

∂t

(
R

∂

∂t
W

)
− ∂

∂x

(
R

∂

∂x
W

)
= 0, (29)

2
R±
R

a± =
R±±
R

− 1
2

(
R±
R

)2

+ 2W 2
±. (30)

Note that Eq. (28) is decoupled from the rest. We make the choice

R(x, t) = R0(e2(t+x) + e2(t−x)).

The Eq. (29) is the Euler–Lagrange equation of the Lagrangian

L(t, ∂tW,∂xW ) =
∫

R(∂tW )2 − R(∂xW )2dx.

We make the choice W (x, t) = W1 +W0 arctan e2x. These solutions are the W -sta-
ble solutions, i.e. those W that with fixed values at the boundary (infinity in this
case) minimize the potential V =

∫
R(x, 0)(∂xW )2dx. We proceed now to find out

a. Observing that

2(W±)2 =
W 2

0

2 cosh2 2x
,

Eq. (30) can be written

2
R±
R

a± =
R±±
R

− 1
2

(
R±
R

)2

+
W 2

0

2 cosh2 2x
. (31)

Dividing by R±/R and adding and subtracting both equations we get

∂xa = −
(

1
2

+
W 2

0

2

)
tanh 2x,

∂ta =
3
2

+
W 2

0

2
,
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which after integration give

a(x, t) = a(0) −
(

1
2

+
W 2

0

2

)
1
2

ln cosh 2x +
(

3
2

+
W 2

0

2

)
t.

In the next section we analyze these solutions along some particular space-like
foliations.

2.3.2. The Evolution of States on a Torus Neck. Convene that by observes we
mean a space-like slice S(t′) moving with a parametric time t′. Let us analyze
the solutions found in the previous section with this perspective. First, for those
observers who in a forced manner move keeping their x-coordinate constant and
moving uniformly forward in time t = t′, the normalized three-geometry (normal-

ized by e

(
3
2+

W2
0

2

)
t
), collapses along the two-tori into the one-dimensional geometry

g∞ = e
a(0)−

(
1
2+

W2
0

2

)
ln cosh 2x

2 dx2,

on the real line and of finite length. However, for those observers who freely fall in
space–time along time-like geodesics, the normalized three-geometry will be seen
to evolve into a hyperbolic cusp

g∞ = dx2 + R0e
2W±∞e2xdθ2

1 + R0e
−2W±∞e2xdθ2

2.

There are in fact two natural sets of free-falling observers, those who move with
positive x and those with negative x. Both will observe the normalized three-geom-
etry become into hyperbolic cusps (exponentially in time). In between them the
geometry is collapsing, as will be made precise in what follows.

Free falling observers. We will assume a minor approximation that in no way
changes the global picture, nor the precise statements that follow on the evolution
of the exact geometry. Concentrate on the region x ≥ 10. On it the metric g (in
the (t, x) plane) is almost like

e
2

((
3
2+

W2
0

2

)
t−

(
1
2+

W2
0

2

)
x

)

(−dt2 + dx2).

We will consider time-like geodesics in this region (towards the increasing direc-
tion of t). Denote by s their proper time. Then it can be calculated that, inde-
pendently of the initial velocity, the coordinates (t(s), x(s)) of time-like geodesics
behave according to

−
(

1
2

+
W 2

0

2

)
t +

(
3
2

+
W 2

0

2

)
x =

1
2

ln
3 + W 2

0

1 + W 2
0

+ o

(
1
s

)
,

−
(

1
2

+
W 2

0

2

)
x +

(
3
2

+
W 2

0

2

)
t = ln s +

1
2

ln
(3 + W 2

0 )(1 + W 2
0 )

2
+ o

(
1
s

)
.
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What these formulas tell us is that the set of coordinates

t′ = −
(

1
2

+
W 2

0

2

)
x +

(
3
2

+
W 2

0

2

)
t,

x′ = −
(

1
2

+
W 2

0

2

)
t +

(
3
2

+
W 2

0

2

)
x,

form the natural coordinate system prescribed by a free-falling set of observers. In

these new coordinates and after choosing a(0)= 1
2 ln

(
−

(
1
2 + W 2

0
2

)2

+
(

3
2 + W 2

0
2

)2
)

we get

g = e2t′
(−dt′2 + dx′2) + R0e

2(π
2 W0+W1)

(
e2(t′+x′) + e

2
2+W2

0
(t′−x′)

)
dθ2

1 + · · ·

· · · + R0e
−2(π

2 W0+W1)(e2(t′+x′) + e
2

2+W2
0

(t′−x′)
)dθ2

2.

After making W+∞ = π
2 W0 + W1 and normalizing by e2t′

we see that the local
three-geometry exponentially falls into the hyperbolic cusp

g = dx2 + R0e
2W+∞e2xdθ2

1 + R0e
−2W+∞e2xdθ2

2

2.3.3. A Convergence–Collapse Picture. Let us describe now a global foliation of
Cauchy hypersurfaces (labeled with a parameter s ≥ 1) where we can see the pic-
ture of convergence–collapse. For any s the hypersurface will be defined as: (Zone I)
{(t, x), −

(
1
2 + W 2

0
2

)
ln s +

(
3
2 + W 2

0
2

)
t = s, | x |≤ ln t}, (Zone II) {(t, x), s =

t′ = −
(

1
2 + W 2

0
2

)
x +

(
3
2 + W 2

0
2

)
t, x ≥ ln s} and (Zone III) {(t, x), s = t′′ =

(
1
2 + W 2

0
2

)
x +

(
3
2 + W 2

0
2

)
t, x ≤ − ln s}. Normalize the three-metrics over the

slices with the factor e−2s. As s → +∞ the limit of the normalized three-metrics
are: (Zone I)

g∞ = dx̃2,

which is the infinite-length one-dimensional geometry on the real line, and (Zone II)

g∞ = dx2 + R0e
2W+∞e2xdθ2

1 + R0e
−2W+∞e2xdθ2

2,

on the whole R × T 2, and similarly for the Zone III. A schematic picture can be
seen in Fig. 2.

2.3.4. The Geometry on a Torus Neck (the Non-Polarized Case). In this sec-
tion we follow the same strategy as in Sect. 2.3.1 to find (Gowdy) T 2-symmetric
space–time solutions but this time non-polarized. On R × R × T 2 we look for a
non-polarized T 2-symmetric metric in the coordinates where it looks like

g = e2a(−dt2 + dx2) + R(e2W + q2e−2W )dθ2
1 − Rqe−2W 2dθ1dθ2 + Re−2W dθ2

2,

(32)
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Figure 2. A schematic figure showing the evolution of the nor-
malized three-geometry.

and where a, R, W depend only on (t, x) or (u, v) = (−,+) = (t − x, t + x). In
this representation the Einstein equations reduce to

R+− = 0, (33)

2
R++

R
−

(
R+

R

)2

+ 4W 2
+ + q2

+e−4W − 4a+
R+

R
= 0, (34)

2
R−−
R

−
(

R−
R

)2

+ 4W 2
− + q2

−e−4W − 4a−
R−
R

= 0, (35)

(RW−)+ + (RW+)− + Rq+q−e−4W = 0, (36)

(Re−4W q+)− + (Re−4W q−)+ = 0. (37)

Again we make the choice R(x, t) = R0e
2t cosh(2x). With this choice we will solve

for time-independent W and q realizing arbitrary flat metrics on the two tori at
the ends, i.e. which have prescribed asymptotic q∞, q−∞, W∞, W−∞. After that
we will solve for a.

Solving for time independent W and q. Equation (37) forces q′ to satisfy

q′ =
2ce4W

cosh(2x)
. (38)

where c is an arbitrary constant. With q′ of this form, Eq. (36) forces W to satisfy

W ′′ + 2 tanh(2x)W ′ =
−2c2e4W

cosh2(2x)
, (39)
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The strategy to find the solutions to (38)–(39) for W and q and having pre-
scribed asymptotic values at the ends (i.e. when x → ±∞) is the following. Fix
c first. Then find W having the prescribed asymptotic values W (∞) = W∞ and
W (−∞) = W−∞. Then vary c keeping fixed the asymptotic conditions for W and
prove that we can reach at some c the prescribed asymptotic value q(∞) = q∞ if
q(−∞) = q−∞ was prescribed. We will accomplish that by proving that varying
c from some value c0 toward zero, the integral from −∞ to ∞ of Eq. (38) that
defines q(∞) reaches (having q−∞ as the lower limit of integration prescribed)
all possible values. Although Eq. (39) is highly non-linear, it can be integrated
exactly. We note that Eq. (39) is equivalent (unless W is constant in which case
c = 0 and q is constant) to

((cosh(2x)W ′)2)′ = −(c2e4W )′, (40)

which gives

cosh2(2x)W ′2 = −c2e4W + A2, (41)

for A > 0, an arbitrary positive constant. Taking the square root of (41) we get a
separable variables ODE. After integration we get

W = −1
2

ln
| c |
A

cosh(−2A arctan e2x + B), (42)

with B and arbitrary constant. We need to find A and B that solve the asymptotic
conditions for W i.e.

| c |
A

cosh B = e−2W−∞ ,

| c |
A

cosh(−πA + B) = e−2W∞ .

Making the change of variables A = B−D
π we get the equivalent equations

B = D + π | c | e2W∞ cosh D, (43)

D = B − π | c | e2W−∞ cosh B. (44)

Now the problem is to understand the solutions B and D to (43)–(44) as func-
tions of c, W∞ and W−∞. If we graph B(D) (from 43) and D(B) (from 44) on
the same B − D-coordinates axis, we see (observe the factor |c| in front of coshD
and coshB) that there is some positive c0 above which there are no solutions (the
graphs do not intersect), at which there is only one and below which there are only
two solutions (see Fig. 3). In the following we will analyze the solutions A and B
as c → 0. We will see that given a prescribed value q−∞ we get any asymptotic
value for q∞ by varying c from c0 towards zero. The equation

e2W−∞ cosh B = e2W∞ cosh D,

gives for the each one of the two different branches (of solutions (B, D)) the
following behaviors
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Figure 3. The graphs of B(D) (from 43) and D(B) (from 44)
for a small c.

1. (Branch I). Either W∞ = W−∞ for which we get (observe that A=B−D>0)

B = −D → 0,

| c |
A

→ e−2W−∞ ,

or W∞ �= W−∞ for which we get

B → ∞ if W∞ > W−∞ (or − ∞ if W∞ < W−∞),
B − D → 2(W∞ − W−∞) (or − 2(W∞ − W−∞)),

A → 2
π

(W∞ − W−∞)
(

or − 2
π

(W∞ − W−∞)
)

.

2. (Branch II) For any W∞,W−∞

B → ∞,D → −∞,

B + D → 2(W∞ − W−∞),

A ∼ 2B − 2(W∞ − W−∞)
π

.
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With these behaviors for A and B (as c → 0) we get
(Branch I). The formula for q′

q′ =
c

(cosh(2x))
(

|c|
A cosh(−2A arctan e2x + B)

)2 ,

shows that, starting at an arbitrary q−∞, the function q approaches (uniformly)
to the constant function q = q−∞.

(Branch II). The formula for q′ approximates to

q′ ∼ ±e−2W−∞(2B − 2(W∞ − W−∞))
π cosh B cosh(2x)(e−2W−∞(cosh B)−1 cosh(−2A arctan e2x + B))2

.

Rearranged it reads

q′ ∼ ±e2W−∞(2B − 2(W∞ − W−∞)) cosh B

π cosh(2x) cosh(−2A arctan e2x + B))2
. (45)

The factor

cosh(−2A arctan e2x + B) = cosh
(

B

(
−2

A

B
arctan e2x + 1

))
,

in the denominator of Eq. (45), can be bounded above in the interval −1 ≤ x ≤ 1
by

cosh 2Bx.

(We note that −2A
B → −4

π , linearize arctan e2x (x ∼ 0) and get the bound). The
integral

±
1∫

−1

e−2W−∞(2B − 2(W∞ − W−∞)) cosh B

cosh 2x(cosh 2Bx)2
dx,

is equal, after the change of variables Bx = u, to

±
B∫

−B

e2W−∞(2B − 2(W∞ − W−∞)) cosh B

B cosh 2u
B cosh2 2u

du,

that clearly diverges to ± infinity as B goes to infinity.
Solving for a. To find out the expression for a we follow the same procedure as

in the polarized case. We find ȧ and a′ from Eqs. (34) and (35) and then integrate
in time (t) and space (x). As W and q are time independent we have

4W 2
± + q2

±e−W = W ′2 +
q′2

4
e−4W .

Equation (41) gives

W ′2 +
q′2

4
e−4W =

A2

cosh2 2x
.
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This formula makes Eqs. (34) and (35) to have the same form as Eq. (31) but with
W 2

0 replaced by A2

2 . This gives the following expression for a

a(x, t) = a(0) −
(

1
2

+
A2

4

)
1
2

ln cosh 2x +
(

3
2

+
A2

4

)
t.

The analysis of the convergence–collapse picture for these non-polarized solutions
follows exactly as in the polarized case.

2.3.5. The Gluing. CMC states in a torus neck. For simplicity we will work with
the polarized solution in the torus neck we have found before the computations
carry over to the non-polarized case as well. We will find a CMC slice, t = s(x),
of the solution

g = e2a(−dt2 + dx2) + Re2W dθ2
1 + Re−2W dθ2

2,

a(x, t) = a(0) −
(

1
2

+
W 2

0

2

)
1
2

ln cosh 2x +
(

3
2

+
W 2

0

2

)
t,

R(x, t) = R0(e2(t+x) + e2(t−x)),
W (x, t) = W1 + W0 arctan e2x,

with k = −3 and asymptotically of the form t = s(x) ∼ t0 ± (1+W 2
0 )

(3+W 2
0 )

x. With this
asymptotic we guarantee having (almost) flat cone initial states on the ends. The
way to find such CMC slice is by finding appropriate barriers. To do that we first
find a general expression for the mean curvature of a general section t = s(x). We
keep the discussion brief. Given a slice t = s(x) introduce a coordinate system
(x̄, t̄, θ̄1, θ̄2) defined as

x = x̄ + s′(x̄)t̄,
t = s(x̄) + t̄,

θ1 = θ̄1,

θ2 = θ̄2.

In these coordinates the metric g is written

g = −N̄2dt̄2 + ḡ(dx̄ + X̄dt̄)(dx̄ + X̄dt̄) + Re2W dθ̄2
1 + Re−2W dθ̄2

2,

where

ḡ = e2a((1 + s′′t̄)2 − s′2),
N̄2 = e2a(1 − s′2).

and X̄ = 0 when t̄ = 0. From this k is calculated (at the slice t = s(x)) as

k = − 1
ea

√
1 − s′2

(
∂t̄a +

s′′

1 − s′2 +
∂t̄R

R

)
,
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where

∂t̄a = ∂ta + s′∂xa = −
(

1
2

+
W 2

0

2

)
s′ tanh 2x +

(
3
2

+
W 2

0

2

)
,

∂t̄R

R
=

∂xRs′ + ∂tR

R
= 2s′ tanh 2x + 2,

which gives

k(x) = − 1√
1 − s′2 ef

(
s′′

1 − s′2 −
(

1
2

+
W 2

0

2

)
s′ tanh 2x +

(
3
2

+
W 2

0

2

)

+ 2s′ tanh 2x + 2) ,

with

f = −
(

a(0) −
(

1
2

+
W 2

0

2

)
1
2

ln cosh 2x +
(

3
2

+
W 2

0

2

)
s

)
.

Remark 1. Note that k(s(x)+ τ) = e
−

(
3
2+

W2
0

2

)
τ
k(s(x)). This implies in particular

that once we have obtained a CMC slice a CMC foliation is obtained by shifting
it in the (t) time direction.

Now, to construct the barriers, note that for the section t = s(x) = t0+
(

1+W 2
0

3+W 2
0

)
x,

k is asymptotically (i.e. as x → +∞) constant. A direct calculation shows that for
the pair of sections (on the right end)

t = s±(x) = t0 +
1 + W 2

0

3 + W 2
0

x ± 1
x

, (46)

the asymptotic (to leading terms) is

−k ∼ −k0e
∓

(
3
2+

W2
0

2

)
1
x

(
1 + O

(
1
x

))
.

The last formula shows that −k(s+) < −k0 < −k(s−) asymptotically. The exten-
sion of those sections to the center of the neck can be carried as follows. Take two
sections symmetric with respect to the t-axis, that (say on the right) are (i) any
smooth section (s+) from 0 to 10 with s′′ > 0 and s+(10)+ 1+W 2

0
3+W 2

0
(x−10)−ln(x−9)

thereafter (ii) any smooth section (s−) from 0 to 10 with s′′ > 0 and equal to
s−(10) + 1+W 2

0
3+W 2

0
(x − 10) + ln(x − 9) thereafter. It is easy to see using the Remark

above that by shifting the section s− upwards, at some shift the sections have dis-
joint range of their mean curvatures (between the points of intersection) and that
at the point of intersection their tangents are 1+W 2

0
3+W 2

0
up to ∼ 1/x. Due to that, it is

easy to continue these two sections as was said above (in Eq. 46), starting from an
x slightly less than the x where they intersect, in such a way that they have disjoint
range of mean curvatures but asymptotically approaching to s(x) = t0 + 1+W 2

0
3+W 2

0
.
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Note that given a CMC slice as was described above, the same slice is CMC
with the same mean curvature if on the metric g we replace R0 by R0e

−2δ. Also
note that on the (x′, t′) coordinates, for large x′ the metric is written approximately

g = e2t′
(−dt′2 + dx2) + R0e

2(π
2 W0+W1)

(
e2(t′+x′) + e

2
2+W2

0
(t′−x′)

)
dθ2

1

+R0e
−2(π

2 W0+W1)
(

e2(t′+x′) + e
2

2+W2
0

(t′−x′)
)

dθ2
2.

Thus, changing R0 by R0e
−2δ and changing the x′ coordinate by x′′ = x′ − δ the

metric approximates to any given desired order to the flat cone state,

g = e2t′
(−dt′2 + dx′′2) + R0e

2(π
2 W0+W1)e2(t′+x′′)dθ2

1

+R0e
−2(π

2 W0+W1)e2(t′+x′′)dθ2
2.

Moreover, note that the distance between standard parts on the cusps get increased
by ∼ 2δ. δ therefore parametrizes the family of CMC initial states displaying a
convergence–collapse picture.

A traceless transverse tensor. Having now a metric on the torus neck we glue
it to the hyperbolic metrics dx2 + e2xgTi

(on the right (say i = 2) and the left
(say i = 1) of the neck) along intervals of left one around x = x0 and preserving
the T 2 symmetry. There is some freedom of course in this process. We will use
it in a moment. We will look for a T 2-symmetric transverse traceless (2, 0)-ten-
sor K̂TT with respect to the metric that resulted from the gluing. Moreover, we
will demand the components of K̂TT to be zero except for K̂TT,xx, K̂TT,θ1θ1 and
K̂TT,θ2θ2 . Finally, we demand K̂TT to be unchanged on the region inside the neck
which is not the gluing region and, similarly, we demand K̂TT to be unchanged
inside the bulk of the hyperbolic manifolds H1 and H2 which is not the gluing
region. Thus, we want K̂TT to be zero on the hyperbolic sector and right after the
gluing. Observing that for any T 2-symmetric metric the connection coefficients
Γθk

θiθj
for i, j, k equal to 0 or 1 are zero and similarly for Γx

xθi
and Γθi

xx for i = 0, 1
we have

∇iK̂
i
TT,θj

= 0, j = 0, 1.

For ∇iK̂
i
TT x we compute

∇iK̂
i
TT,x = ∂xK̂x

TT,x + (Γθ2
xθ2

− Γθ1
xθ1

)K̂x
TT,x (47)

where we have implicitly used that K̂x
TT,x + K̂θ1

TT,θ1
+ K̂θ2

TT,θ2
= 0. We need to find

a solution of (47) being exactly zero after an interval of length one. To do that we
choose the glued metric in such a way that Γθ1

xθ1
�= Γθ2

xθ2
(with a small difference)

on an interval of length one half inside the gluing interval. Then choose K̂θ1θ1

such that the solution to (47) is exactly zero right after the gluing region. One can
check that this can be done using the integral formula for the solution of a first
order ODE.
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Estimates. Once having (g,K) with divK = 0 and trgK = k we invoke a
theorem of Isenberg [12] guaranteeing that the Lichnerowicz equation is solvable
as long as K̂ �= 0 and k �= 0 as is our case. To estimate the solution to the
Lichnerowicz equation

Δφ =
1
8
Rgφ − 1

8
|K̂|2gφ−7 +

k2

12
φ5,

we use the maximum principle and the standard local elliptic estimates. From the
maximum principle we get

Rgφ(xmax) − |K̂|2φ(xmax)−7 +
k2

12
φ(xmax)5 ≤ 0,

Now note that Rg = |K̂|2 − 2
3k2 + ε(x) where ε(x) is nonzero only on the gluing

region. Using this in the last equation gives

|K̂|2(φ(xmax)−φ−7(xmax))+
2
3
k2(φ(xmax)5−φ(xmax))+ε(xmax)φ(xmax)≤0. (48)

Observe that ‖K‖L∞
g

is bounded with a bound independent of ε. We see from
Eq. (48) that when ‖ε‖L∞ → 0 then ‖φ − 1‖L∞ → 0. Standard elliptic estimates
show that in fact ‖φ − 1‖C2,α → 0.

3. Long-Time Geometrization of the Einstein Flow

3.1. The Long-Time Geometrization of the Einstein Flow

In this section we prove the following Theorem.

Theorem 4. Let Σ be a compact three-manifold with Y (Σ) ≤ 0. Say (g̃, K̃)(σ) is
a cosmologically normalized flow with Ẽ1(σ) ≤ Λ where Λ is a positive constant.
Then, the cosmologically normalized flow (g̃, K̃)(σ) persistently geometrizes the
manifold Σ. Moreover the induced geometrization is the Thurston geometrization
iff V(σ) ↓ Vinf =

(− 1
6Y (Σ)

) 3
2 .

We need some preliminary propositions.

Proposition 2. Let Σ be a compact three-manifold. Say g0 is a H2-Riemannian-
metric on Σ. Say p ∈ Σ and 2R < r2(p) where r2(p) is the H2-harmonic radius of
the metric g0 at the point p. According to the definition of H2-harmonic radius we
consider a harmonic coordinate system {x} covering Bg0(p, r2(p)) and satisfying

3
4
δjk ≤ g0,jk ≤ 4

3
δjk, (49)

r2(p)

⎛

⎜
⎝

∑

|I|=2,j,k

∫

Bg0 (p,r2(p))

∣
∣
∣
∣

∂I

∂xI
gjk

∣
∣
∣
∣

2

dvx

⎞

⎟
⎠ ≤ 1. (50)
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Then there is ε(R) such that if ‖g − g0‖H2
{x}(Bg0 (p,R)) ≤ ε̄ ≤ ε(R) the inclusions

id : Hi
g(Bg0(p,R)) ↪→ Hi

g0
(Bg0(p,R)) and id : Hi

g0
(Bg0(p,R)) ↪→ Hi

g(Bg0(p,R))
for i = 0, 1, 2 have norms controlled by ε̄ and R.

Proof. Note first the Sobolev embeddings12

H1
{x}(Bg0(p,R)) ↪→ L4

{x}(Bg0(p,R)), (51)

H2
{x}(Bg0(p,R)) ↪→ C0

{x}(Bg0(p,R)). (52)

From (51) we see that ‖g − g0‖C0
{x}(Bg0 (p,R)) ≤ ε′(ε̄, R) with ε′ → 0 as ε̄ → 0 (and

R fixed). This in particular implies that

C1g0,ij ≤ gij ≤ C2g0,ij ,

where C1 and C2 depend on ε̄ and R and tend to one as ε̄ → 0 (keeping R fixed).
This proves the inequality

C1‖U‖L2
g0

(Bg0 (p,R)) ≤ ‖U‖L2
g(Bg0 (p,R)) ≤ C2‖U‖L2

g0
(Bg0 (p,R),

for some C1 and C2 dependent on ε̄ and R, which terminates the case i = 0. In the
following we will use the notation C1, C2 to denote generic quantities depending
on ε̄ and R. Let us prove the case i = 1 now. Denote by ∇ and ∇̄ the covari-
ant derivatives associated to g0 and g respectively. Write ∇̄ = ∇ + Γ. With this
notation we have

|∇̄U |2g = |∇U + Γ ∗ U |2g ≤ C2(|∇U |2g0
+ |Γ|2g0

|U |2g0
).

Integrating we get
∫

Bg0 (p,R)

|∇̄U |2gdvg

≤ C2

⎛

⎜
⎜
⎝

∫

Bg0 (p,R)

|∇U |2g0
dvg0 +

⎛

⎜
⎝

∫

Bg0 (p,R)

|Γ|4{x}dvx

⎞

⎟
⎠

1
2

⎛

⎜
⎝

∫

Bg0 (p,R)

|U |4g0
dvg0

⎞

⎟
⎠

1
2
⎞

⎟
⎟
⎠ .

(53)

It is direct to see from the formula

Γk
ij =

1
2
(∇i(gjm − g0,jm) + ∇j(gim − g0,im) − ∇m(gij − g0,ij))gkm,

that ‖Γ‖H1
{x}(Bg0 (p,R)) → 0 as ε̄ → 0. Sobolev embeddings applied to equation (53)

give

‖∇̄U‖2
L2

g(Bg0 (p,R)) ≤ C2‖U‖2
H1

g0
(Bg0 (p,R)),

12 It is crucial that the embeddings are from H�
{x}(Bg0 (p, R)) and not from H�

0,{x}(Bg0 (p, R)).

This is justified by the fact that, in the coordinate system {x} the set Bg0 (p, R) has the cone

property at its boundary (see [9, p. 158]).
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and thus

‖U‖2
H1

g (Bg0 (p,R)) ≤ C2‖U‖2
H1

g0
(Bg0 (p,R)),

as desired. Let us prove the other inequality. Write

|∇U |2g0
= |∇̄U − Γ ∗ U |2g0

≤ C1(|∇̄U |2g + |Γ|2g0
|U |2g0

).

Integrating we get
∫

Bg0 (p,R)

|∇U |2g0
dvg0

≤C1

⎛

⎜
⎜
⎝

∫

Bg0 (p,R)

|∇̄U |2gdvg+

⎛

⎜
⎝

∫

Bg0 (p,R)

|Γ|4g0
dvg0

⎞

⎟
⎠

1
2

⎛

⎜
⎝

∫

Bg0 (p,R)

|U |4g0

⎞

⎟
⎠

1
2
⎞

⎟
⎟
⎠,

Again Sobolev embeddings give

‖∇U‖2
L2

g0
(Bg0 (p,R)) ≤ C1(‖∇̄U‖2

L2
g(Bg0 (p,R)) + ‖Γ‖2

H1
{x}(Bg0 (p,R))‖U‖2

H1
g0

(Bg0 (p,R))).

Moving the second term on the right hand side to the left side and choosing ε̄
sufficiently small13 we have

‖U‖H1
g0

(Bg0 (p,R)) ≤ C1‖U‖H1
g (Bg0 (p,R)),

as desired. The case i = 2 follows easily from the case i = 1. �
We consider now the Einstein flow with zero shift, i.e. we assume we have set

X = 0.

Proposition 3. (Continuity of the flow) Say Σ is a compact three-manifold with
Y (Σ) ≤ 0. Say (g,K)(k) is a long-time Einstein flow with domain (at least)
[−3, 0). Suppose that E1(k) ≤ Λ where Λ is a positive constant. We use the nota-
tion (g0,K0) = (g(−3),K(−3)), k0 = −3 and V(−3) = V0. Say p ∈ Σ and
r2,g0(p) ≥ 2R. Then for any ε > 0 there is δk(Λ,V0, R) > 0 such that

sup
k∈[k0,k0+δk]

{‖(g,K)(k) − (g,K)(k0)‖H2
g0

(Bg0 (p,R))×H1
g0

(Bg0 (p,R))} ≤ ε.

Remark 2. i. Proposition 3 would be self evident if we have a priori control on
r2,g0 over the whole manifold Σ. It is not a priori clear how is that the regions
where the harmonic radius (or volume radius) is small may affect the evolu-
tion of the regions where it is not, even in the short time. What Proposition 3
shows is that under an a priori bound in E1 this influence is not noticeable in
a definite interval of time t = k (depending on E1, ν0 and R). Note however
that we do not make any claim about the continuity in H2

g0
(Bg0(p,R)) of

the lapse N . As we will remark later the H2
g̃0

(Bg0(p,R)) norm of N is indeed
controlled but we do not know whether N satisfies a continuity of the type
claimed for g and K (in their respective spaces). In particular we do not have

13 Note that C1 does not blow up as ε̄ → 0.
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any estimation (in any norm) of the time derivative of N on Bg0(p,R) even
for short times. This issue will appear later in Proposition 4.

ii. The Proposition 3 is evidently true if we use the cosmologically normalized
variables (g̃, K̃), σ and Ẽ1 instead of the variables (g,K), k and E1.

Proof. The crucial fact is to note that there are δ(R, ‖Ric‖L2
g(Σ)) and ε(R,

‖Ric‖L2
g(Σ)) such that if ‖g(k) − g0‖H2

g0
(Bg0 (p,R)) ≤ ε then r2,gk

(∂Bg0(p,R)) ≥ δ.
This result can be easily proved by contradiction or simply invoking the discussion
in [1, see p. 218, p. 227]. Recall that

‖Ric‖2
L2

g(Σ) ≤ C(|k|V + Q0),

where C is a numeric constant. As a result the H2-harmonic radius of the region
Bg(k)(Bg0(p,R), 2

3δ) is controlled from below by Λ,V0 and R as long as ‖g(k) −
g0‖H2

g0
(Bg0 (p,R)) ≤ ε. Elliptic regularity shows that the norms ‖K̂‖H2

g(k)(Bg0 (p,R)),
‖N‖H3

g(k)(Bg0 (p,R)), ‖E0‖H1
g(k)(Bg0 (p,R)) and ‖B1‖H1

g(k)(Bg0 (p,R)) are controlled from
above by Λ, V0 and R as long as ‖g(k) − g0‖H2

g0
(Bg0 (p,R)) ≤ ε. Under zero shift,

the time derivatives of g and K are

g˙= −2NK,

K ˙= −∇2N + N(E − K ◦ K).

Thus ‖g ‖̇H2
g(k)(Bg0 (p,R)) and ‖K ‖̇H1

g0
(Bg0 (p,R)) are controlled above by (say)

Λ̃(Λ,V0, R) as long as ‖g(k) − g0‖H2
g0

(Bg0 (p,R)) ≤ ε. Write

‖g(k) − g0‖H2
g0

(Bg0 (p,R)) ≤
k∫

k0

‖g ‖̇H2
g0

(Bg0 (p,R))dk,

‖K(k) − K0‖H1
g0

(Bg0 (p,R)) ≤
k∫

k0

‖K ‖̇H1
g0

(Bg0 (p,R))dk.

By Proposition 2 we can bound ‖g ‖̇H2
g0

(Bg0 (p,R)) by C1‖g ‖̇H2
g(k)(Bg0 (p,R)) and simi-

larly for the H1
g0

-norm of K .̇ Thus the length δk of the maximal interval [k0, k0+δk]
where ‖g(k) − g0‖H2

g0
(Bg0 (p,R)) ≤ ε is greater than ε/(C1Λ̃) and similarly for the

H1
g0

-norm of K. �

Proposition 4. Let Σ be a compact three-manifold with Y (Σ) ≤ 0. Assume (g̃, K̃)
is a cosmologically normalized long-time flow. Assume too that Ẽ1 ≤ Λ with Λ a
positive constant. Then, for every ε > 0 and R > 0 there exists σ0 such that for
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any σ ≥ σ0 and p ∈ Σ with r2,g̃(σ) ≥ 4R we have

‖ ˆ̃K(σ)‖H1
g̃(σ)(Bg̃(σ)(p,R)) ≤ ε, (54)

‖R̂ic(σ)‖L2
g̃(σ)(Bg̃(σ)(p,R)) ≤ ε, (55)

‖E0(σ)‖2
L2

g̃(σ)(Bg̃(σ)(p,R)) + ‖B0(σ)‖2
L2

g̃(σ)(Bg̃(σ)(p,R)) ≤ ε. (56)

Proof. The way to prove Proposition 4 is to show that for any R > 0, any sequence
of points {pi}, and any divergent sequences of logarithmic-times {σi} for which
r2,g̃(σi) ≥ 4R, the norms (54), (55) and (56) (with σi instead of σ and pi instead
of p) tend to zero. We will use the terminology “Case 54” for the proof of this on
ˆ̃K and similarly for R̂ic (Case 55) and E0, B0 (Case 56).

Let us start by making some elementary but important observations.

Observation 1. From (the proof of ) Proposition 3 we know that there are {δσi}
with |δσi| controlled from below by Λ, V and R (observe that because V is mono-
tonic along the flow we can replace the dependence on V(σi) for the dependence
only on V0 = V(σ0) with σ0 some initial logarithmic time) and such that the norms

‖ ˆ̃K‖H2
g̃(σ)(Bg̃(σi)(pi,2R)) for σ ∈ [σi, σi + δσi], are controlled from above by Λ, V0

and R. It follows from the maximum principle applied to the lapse equation

−Δg̃(σ)Ñ + |K̃(σ)|2g̃(σ)Ñ = 1,

that Ñ(p, σ) ≥ Ñ0(Λ,V0, R) > 0 for p in Bg̃(σi)(pi,
7
4R) and for σ in [σi, σi +δσi].14

Observation 2. Recall that

dV
dσ

= 3
∫

Σ

3Ñ − 1dvg̃ = 3
∫

Σ

φdvg̃,

where (as was introduced in the background) φ = 3Ñ−1 is the Newtonian potential
and satisfies −1 ≤ φ ≤ 0. If we integrate this equation between σi and σi + δσi

(where δσi will be the one in Proposition 3) we get

V(σi) − V(σi + δσi) = −3

σi+δσi∫

σi

∫

Σ

φ(σ)dvg̃(σ)dσ

≥ −3

σi+δσi∫

σi

∫

Bg̃(σi)(pi,2R)

φ(σ)dvg̃(σ)dσ.

14 The argument is by contradiction. Assume there exists a sequence of states violating the
inequality an obtain a convergent sub-sequence which violated the maximum principle.
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As V(Σi) − V(σi + δσi) → 0 when σi → ∞ (because V is monotonic and greater
than zero) it follows that

μ{σ ∈ [σi, σi + δσi]/

⎛

⎜
⎝

∫

Bg̃(σi)(pi,2R)

φ2(σ)dvg̃(σ)

⎞

⎟
⎠ > Γ} → 0,

as σi → ∞, and for any fixed Γ > 0.

Let us prove now that ‖ ˆ̃K‖L2
g̃(σi)

(Bg̃(σi)(pi,
7
4 R)) → 0 as σi → ∞. Recall that

dV
dσ

= −3
∫

Σ

Ñ | ˆ̃K|2g̃dvg̃.

Integrating in σ we have

V(σi) − V(σi + δσi) ≥ 3

σi+δσi∫

σi

∫

Bg̃(σi)(pi,
7
4 R)

Ñ | ˆ̃K|2g̃dvg̃.

It follows from Proposition 3 and Observation 1 that V(σ) can get below its

limit V∞ = limσ→∞ V(σ) unless limσ→∞ ‖ ˆ̃K‖L2
g̃(σi)

(Bg̃(σi)(pi,
7
4 R)) = 0. Now as

‖ ˆ̃K‖H2
g̃(σi)

(Bg̃(σi)(pi,2R)) is controlled from above by Λ, V and R, it follows that if

‖ ˆ̃K‖H1
g̃(σi)

(Bg̃(σi)(pi,
7
4 R)) ≥ M > 0 we can extract a sub-sequence of the pointed

spaces (Bg̃(σi)(pi,
7
4R), pi, g̃(σi)) converging to a limit space (strongly in H2)

(Bg̃∞
(
p∞, 7

4R
)
, p∞, g̃∞) where ˆ̃K is not converging to zero which is a contra-

diction. This finishes the case (54).
We use now this result and Observation 1 to get an improved version of

Observation 1.

Observation 3. Local elliptic estimates applied to the lapse equation (in the
φ-variable)

Δg̃φ − |K̃|2g̃φ = | ˆ̃K|2g̃,
give

μ{σ ∈ [σi, σi + δσi]/‖φ‖H2
g̃(σ)(Bg̃(σi)(pi,

3
2 R))(σ) ≥ Γ} → 0,

as σi → ∞ and for any fixed Γ > 0. An important consequence of this is that for
any space-like tensors Uk, k = 1, 2, 3 such that ‖Uk‖L2

g̃(σ)(Bg̃(σi)(pi,
3
2 R)) ≤ M for

some M > 0 and for any k = 1, 2, 3 we have
∣
∣
∣
∣
∣
∣
∣
∣

σi+δσi∫

σi

∫

Bg̃(σi)(pi,
3
2 R)

U0 ∗ φ + U1 ∗ ∇φ + U3 ∗ ∇2φ dvg̃(σ)dσ

∣
∣
∣
∣
∣
∣
∣
∣

→ 0,

as σi → ∞.
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Recalling that

Curlg̃
˜̂
K = −B0,

we conclude that ‖B0‖L2
g̃(σi)

(Bg̃(σi)(pi,2R)) → 0 (which is “half” the case (56)).
To prove the case (55) we note that it is enough from

R̂icg̃ = E + ˆ̃K + ˆ̃K ◦ ˆ̃K − 1
3
| ˆ̃K|2g̃,

and case (54), to prove that ‖E‖L2
g̃(σi)

(Bg̃(σi)(pi,R)) tends to zero as σi → ∞. This
is however more difficult than the cases before. We will study the quantity

∫

Bg̃(σi)(pi,
3
2 R)

〈E, ˆ̃K〉g̃dvg,

and its time derivative with respect to logarithmic time. Differentiating with
respect to σ we have

⎛

⎜
⎝

∫

Bg̃(σi)(pi,
3
2 R)

〈E, ˆ̃K〉g̃dvg̃

⎞

⎟
⎠ ˙ =

∫

Bg̃(σi)(pi,
3
2 R)

〈E; ˆ̃K〉g̃ + 〈E, ˆ̃K〉g̃

−〈E ◦ ˆ̃K, g̃˙〉g̃ + 3〈E, ˆ̃K〉g̃φdvg̃. (57)

To get a more convenient expression of the right hand side of the previous equation
we will use the following expressions for the time derivatives of the cosmologically
normalized variables g̃, E and ˆ̃K

˙̃g = 2φg̃ − 6Ñ
˜̂
K, (58)

Ė = ÑCurlg̃B − ∇Ñ

Ñ
∧g̃ B − 5

2
E ×g̃ K̃ − 2

3
〈E, K̃〉g̃ g̃ − 3

2
E, (59)

˙̂̃
K = − ˜̂

K − φg̃ − ∇2φ + φE + E − Ñ( ˜̂
K ◦ ˜̂

K − 2 ˜̂
K). (60)

We now integrate Eq. (57) in σ for σ in [σi, σi]. After integration of the left hand
side we have (naturally) the expression

⎛

⎜
⎜
⎝

∫

Bg̃(σi)(pi,
3
2 R)

〈E, ˆ̃K〉g̃dvg̃

⎞

⎟
⎟
⎠ (σi + δσi) −

⎛

⎜
⎜
⎝

∫

Bg̃(σi)(pi,
3
2 R)

〈E, ˆ̃K〉g̃dvg̃

⎞

⎟
⎟
⎠ (σi). (61)

From Case (54) and the bound
∣
∣
∣
∣
∣
∣
∣
∣

∫

Bg̃(σi)(pi,
3
2 R)

〈E, ˆ̃K〉g̃dvg̃

∣
∣
∣
∣
∣
∣
∣
∣

(σ) ≤ ‖E0‖L2
g̃(Bg̃(σi)(pi,

3
2 R))(σ)‖ ˆ̃K‖L2

g̃(Bg̃(σi)(pi,
3
2 R))(σ),
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we get that for any σ (in particular for σ = σi and σ = σi + δσi) we have that
(61) tends to zero as i → ∞. Similarly, using either Observation 3, Case (54) or
the B0-part of Case (56) we have that all the terms in the right hand side of the
integral in σ of Eq. (57), except perhaps the term

σi+δσi∫

σi

∫

Bg̃(σi)(pi,
3
2 R)

|E0|2dvg̃dσ,

tend to zero. Thus we are lead to conclude that this term also tends to zero when
i → ∞. We will see now using the Gauss equation that (

∫
Bg̃(σi)(pi,R)

|E0|2dvg̃)(σi)
tends to zero as i → ∞. That would finish Case (56) and Case (55). The argu-
ment is as follows. Consider a fixed, even and positive function f of one variable
x, equal to zero for |x| ≥ 3

2 and equal to one for |x| ≤ 1. Consider the function
f(r) where r is the geodesic radius from pi and corresponding to the metric g̃(σi)
inside Bg̃(σi)(pi, 2R). Extend f(r) to the space–time in such a way that it is time
independent. Consider finally the Weyl field W = fRm. We have

EW = fE0, BW = fB0,

and

JW,bcd = (∇af)Rmabcd.

Thus, the L2
g̃(Bg̃(σi)(pi,

3
2R)) norm of EW, BW and JW are controlled by Λ, V0

and R. It follows from integrating the Gauss equation

Q̃(W)˙= Q̃(W) − 9
∫

Σ

ÑQ̃(W)αβT̃ T̃ Π̃αβdvg̃.

in σ and from σi to σi + δσ that

|Q̃(W)(σi + δσ) − Q̃(W)(σi)| ≤ Λ̃(Λ,V0, R)δσ.

Thus if (
∫

Bg̃(σi)(pi,R)
|E0|2g̃dvg̃)(σi) ≥ M > 0 we can choose δσ such that for all σ

in [σi, σi + δσ] it is Q̃(W)(σ) ≥ M
2 > 0. But we have

Q̃(W) =
∫

Bg̃(σi)(pi,
3
2 R)

f2(|E0|2 + |B0|2)dvg̃,

and we know from the B0-part of Case (56) that

lim
σi→∞ sup

σ∈[σi,σi+δσ]

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

∫

Bg̃(σi)(pi,
3
2 R)

f2|B0|2dvg̃

⎞

⎟
⎟
⎠ (σ)

⎫
⎪⎪⎬

⎪⎪⎭
→ 0,
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when i → ∞. Therefore, if σi is big enough
⎛

⎜
⎜
⎝

∫

Bg̃(σi)(pi,
3
2 R)

|E0|2dvg̃

⎞

⎟
⎟
⎠ (σ) ≥ M

3

for any σ in [σi, σi + δσ] which would contradict that
σi+δσi∫

σi

∫

Bg̃(σi)(pi,
3
2 R)

|E0|2dvg̃dσ,

tends to zero as σi tends to infinity. �

We are ready to prove Theorem 4. The proof goes essentially along the same
lines as the proof of the geometrization of the flow given in [15] for long-time flows
under Cα

g̃ curvature bounds. We repeat it here for the sake of clarity.

Proof (of Theorem 4). We prove first there is a divergence sequence of logarithmic
times {σi} with

(
Σ

1
i , (g̃, K̃)(σi)

)
converging to ∪i=n

i=1 (Hi, (g̃H,i,−g̃H,i)) (weakly in

H2). Introduce a new variable j = 1, 2, 3, . . .. For j = 1 find a sequence {σ1,i} with
(Σ1, g̃(σ1,i)) convergent weakly in H2. For j = 2 find a sub-sequence {σ2,i} of
{σ1,i} with (Σ1/2, g̃(σ2,i)) convergent in the weak H2 topology. Proceed similarly
for all j to have a double sequence {σj,i}. Now, for the diagonal sequence {σi,i},
(Σ1/i, g̃(σi,i)) converges into a union of Riemannian manifolds of finite volume,
denoted as ∪ν(Mν , g̃∞,ν). By Proposition 4, K̃(σi,i) converges strongly to −g̃∞,ν

in H1. Also by Proposition 4 we get that each metric g̃∞,ν is hyperbolic and the
convergence is in the strong H2-topology. Therefore, as there is a lower bound for
the volume of complete hyperbolic manifolds of finite volume and the total volume
of the limit space is bounded above, there must be a finite number of components,
and we can write ∪ν(Mν , g̃∞,ν) = ∪i=n

i=1 (Hi, g̃H,i).
We prove next that each component (Hj , g̃H,j) is persistent. For simplicity

assume there is only one component and therefore (Σ1/i, g̃(σi,i)) converges in the
strong H2-topology to (H, g̃H). There are two possibilities according to whether
the component is compact or not, we discuss them separately.

1.(The compact case) Assume (H, g̃H) is compact. Consider the space of met-
rics MH in H. For every metric g consider the orbit of g under the diffeomorphism
group (of H3-diffeomorphisms). Denote such orbit by o(g). Around g̃H consider a
small (smooth) section S of MH (made of H2

g̃H
metrics) and transversal to the

orbits generated by the action on MH of the diffeomorphism group.15 If ε0 is suf-
ficiently small every metric g in MH with ‖g − g̃H‖H2

g̃H
≤ ε0 can be uniquely pro-

jected into S by a diffeomorphism, or in other words we can consider the projection

15 Which particular section is taken is unimportant. One can use for instance S = {g/id :
(H, g) → (H, g̃H)} is harmonic (see [5,11]).
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P (g) = o(g)∩S. Note that one can project every flow of metrics g̃(t) starting close
to g̃H , to a path P (g̃(t)), until at least the first time when ‖P (g̃(t))− g̃H‖H2

g̃H
= ε0

or in other words until at least when the projection touches the boundary of the
ball of center g̃H and radius ε0 in H2

g̃H
(denote such ball as B(g̃H , ε0)).

Recall Mostow rigidity.16

Mostow rigidity (the compact case). There is ε1 such that if P (g′
H) ∈

B(g̃H , ε1), where g′
H is a hyperbolic metric in H then P (g′

H) = g̃H .
Fix ε2 = min{ε0, ε1}. Observe that as g̃σi,i

→ g̃H in H2 there is a sequence
of diffeomorphisms φi such that φ∗

i (g(σi,i)) converges to g̃H in H2
g̃H

. Now, if
the geometrization is not persistent there is ε ≤ ε2 and i2 such that if i ≥ i2
then P (φ∗

i (g̃(σ))) is well defined for σ ≥ σi,i until a first time σi,i + Ti when
P (φ∗

i (g̃(σi,i + Ti))) is in ∂B(g̃H , ε2). But we know the sequence of Riemannian
manifolds (H,P (φ∗

i (g̃(σi,i + Ti)))) converge in H2 to g̃H , and that means by the
definition of H2 convergence and Mostow rigidity that there is a sequence of diffe-
omorphisms ϕi such that P (ϕ∗

i (P (φ∗
i (g̃(σi,i + Ti)))) converges to g̃H in H2

g̃H
. This

contradict the fact that P (φ∗
i (g̃(σi,i + Ti))) is in ∂B(g̃H , ε2).

2. (The non-compact case). The proof of this case proceeds along the same
lines as in the compact case but special care must be taken at the cusps.17 Let
us assume for simplicity that there is only one cusp in the piece (H, g̃H). Given
A sufficiently small there is a unique torus transversal to the cusp, to be denoted
by T 2

A, of constant mean curvature and area A. Denote by HA the “bulk” side of
the torus T 2

A in H. Consider the set MHA
of metrics g̃ on HA such that g̃ = g̃H

on Bg̃H
(T 2

A, 1). Consider the action of the diffeomorphism group (of H3-diffeomor-
phisms) on MHA

and leaving Bg̃H
(T 2

A, 1) invariant. Again the orbit of a metric g̃
will be denoted by o(g̃). Consider a small (smooth) section S of MHA

transversal
to the orbits of the action by the diffeomorphism group mentioned above. Finally
consider the projection P (g̃) = o(g̃)∩S which is well defined on a ball B(g̃H , ε0) for
ε0 small enough. Observe again that a flow of metrics g̃(t) in MHA

can be projected
into S until at least the first time when P (g̃(t)) is in ∂Bg̃H

(g̃H , ε0). Slightly abus-
ing the notation (as we would require a pointed sequence) consider the sequence
(Σ, g̃(σi,i)) converging in H2 to g̃H . There is a sequence of diffeomorphisms (onto
the image) φσi,i

: HA → Σ such that ‖φ∗
σi,i

(g̃(σi,i)) − g̃H‖H2
g̃H

converges to zero.
Note that if we have a map φσ : HA → Σ such that ‖φ∗

σ g̃(σ) − g̃H‖H2
g̃H

≤ 2ε for
ε sufficiently small then we can deform φ∗

σ g̃(σ) to a metric S(φ∗
σ g̃(σ)) in MHA

in

16 Mostow rigidity states that any two hyperbolic metrics on a compact manifold are necessarily
isometric. What we state as Mostow rigidity here is an obvious consequence of this fact. For
the notions on hyperbolic three-geometry that we will need we refer the reader to the beautiful
survey by Gromov [10]. Most of the treatment of hyperbolic three-geometry we will perform here
goes in parallel to a similar analysis in the Ricci flow in [11].
17 In [15] we have used CMC tori (transversal to the cusp) of a given area to compare (in a
unique way) the Riemannian spaces (H, g̃H) and (Σ, g̃(σ)) (see [15] for details). If g̃(σ) is close
to g̃H only in H2

g̃H
the CMC tori of a given area and transversal to the tori may be difficult to

guarantee. It is for this reason that (see later in the text) we smooth out the metrics g̃(σ) near
the regions where “the CMC tori of a given area would be”.
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such a way that (a) S(φ∗
σ g̃(σ)) = φ∗

σ g̃(σ) on He4A, (b) inside (He2A − He4A) the
metric S(φ∗

σ g̃(σ)) is chosen to minimize the L2
S(φ∗

σ g̃(σ))-norm of the traceless part
of its Ricci tensor. Note the following elementary fact: if ε is chosen small enough
and we have a diffeomorphism φ : (HA, g̃H) → (Σ, g̃) with ‖φ∗

σ g̃ − g̃H‖H2
g̃H

≤ 2ε

and φ∗g̃ is isometric to g̃H then the new metric S(φ∗g̃) is the deformation of g̃H

by a diffeomorphism on HA (we will recall this note later as note N).
We note now the following crucial facts (justified below).
i. For all A > 0 but sufficiently small there exists σ0 and ε0 such that for all

ε ≤ ε0 and σ1 ≥ σ0 if there exists φσ1 : He4A → Σ with ‖φ∗
σ1

g̃(σ1) − g̃H‖H2
g̃H

≤ ε

then there exists φ̄σ1 : HA → Σ with ‖φ̄∗
σ1

g̃(σ1) − g̃H‖H2
g̃H

≤ 2ε. Note that in this

case S(φ̄∗
σ g̃(σ)) is well defined.

ii. From i. we conclude that if we have φσ1 : HA → Σ with satisfying: (a)
‖φ∗

σ1
g̃(σ1) − g̃H‖H2

g̃H
≤ 2ε, (b) the restriction of φσ1 to He4A with ‖φ∗

σ1
g̃(σ1) −

g̃H‖H2
g̃H

(He4A) ≤ ε, (c) ‖P (S(φ∗
σ1

g̃(σ1))) − g̃H‖H2
g̃

≤ ε then φσ : HA → Σ with the
properties (a) and (b) exist for σ ≥ σ1 (and varying continuously) until at least
the first time σ2 for which ‖P (S(φ∗

σ2
g̃(σ2))) − gH‖H2

g̃H
= ε.

Let us justify now claim i. Recall Mostow rigidity.

Mostow rigidity (the non-compact case). There is A0 such that for any A ≤ A0

there is ε0 such that if (Σ′, g′
H) is a complete hyperbolic manifold of finite vol-

ume and φ : HA → Σ′ is a diffeomorphism onto the image satisfying ‖φ∗(g′
H) −

g̃H‖H2
g̃H

≤ ε0 then (Σ′, g′
H) is isometric to (H, g̃H).18

The justification of i. follows straight from Mostow rigidity. Indeed pick any
A such that e2A ≤ A0 and ε ≤ ε0 as in the Mostow rigidity statement. Suppose
there exists a divergent sequence {σi} and a sequence of diffeomorphisms onto
the image φσi

: He4A → Σ such that ‖φ∗
σi

g̃(σi) − g̃H‖H2
g̃H

≤ ε but such that it

cannot be extended to a diffeomorphism φ̄σi
: HA → Σ with ‖φ̄∗

σi
− g̃H‖H2

g̃H
≤ 2ε.

We can extract a (pointed) sub-sequence of {(Σ, g̃(σi)} converging to a complete
hyperbolic metric of finite volume, which, by Mostow rigidity and the choice of A
and ε must be isometric to g̃H . Therefore for σi sufficiently big the diffeomorphism
φ̄σi

can be defined which is a contradiction.
Now from facts i. and ii. we get that, if the geometrization (H, g̃H) is not

persistent there is ε ≤ ε0 and σ0 such that if σi,i ≥ σ0 then P (Sφ∗
σ(g̃(σ))) is well

defined for σ ≥ σi,i until a first time σi,i + Ti when P (S(φ∗
i g̃(σi,i + Ti))) is in

∂B(g̃H , ε). Now the sequence φ∗
i (g̃(σi,i +Ti)) has a sub-sequence converging in H2

to a complete hyperbolic metric of finite volume. Again as in the compact case,

18 The justification of this claim is as follows. According to the Mostow-Prasad rigidity g′ and
g̃H will be isometric if we can prove that Σ′ is diffeomorphic to H. If ε is chosen small enough

this is equivalent to show that the number of cusps of Σ and Σ′ are the same. This follows from
the Margulis lemma [10] and the fact that if ‖φ∗g′ − g̃H‖H2

g̃H

≤ ε then ‖φ∗g′ − g̃H‖
C

1
2
g̃H

≤ Cε

where C is a numeric constant.
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by Mostow rigidity it must be converging in H2 to g̃H . Therefore (recall note N)
P (S(φ∗

σ g̃(σ))) must be converging to a metric on HA which is a diffeomorphism
of g̃H contradicting the fact that P (S(φ∗

i (g̃(σi,i + Ti)))) is in ∂Bg̃H
(g̃H , ε2).

To finish the proof of the persistence of the geometrization one still needs to
show that the compliment of the persistent pieces (Hi, g̃H,i) is the G sector or in
other words that for any ε > 0, (Σε(σ), g̃(σ)) converges to the ε-thick part of the
persistent pieces (Hi, g̃H,i). The proof of this fact follows by contradiction. If this is
not the case one can extract a divergent sequence of logarithmic times containing
an H-piece different from the pieces (Hi, g̃H,i). One can prove again that this new
piece is persistent leading into a contradiction for if persistent, the piece must be
one of the pieces (Hi, g̃H,i) by the way these pieces are defined. �

3.2. Stability of the flat cone (Case Y (Σ) < 0 (I)-ground state)

In this section we will prove the stability of the Case Y (Σ) < 0 (I)-ground state.
Namely, we will show that a cosmologically normalized flow (g̃, K̃) over a hyper-
bolic three-manifold Σ, with initial data (g̃, K̃)(σ0) close (in H3 × H2) to the
ground state (gH ,−gH), converges (in H3 × H2) to the ground state (gH ,−gH)
when σ → ∞. This stability has been proved by Andersson and Moncrief in [5]
(for rigid hyperbolic manifolds Σ).19

Theorem 5. (Stability of the flat cone). Let Σ be a compact hyperbolic three-
manifold. Then, there is an ε > 0 such that the cosmologically normalized CMC
flow (g̃, K̃)(σ) of a cosmologically normalized (H3 × H2) initial state (g0,K0) =
(g̃(σ0), K̃(σ0)) with Ẽ1(σ0) + (V − Vinf ) ≤ ε, converges in H3

gH
× H2

gH
(and for a

suitable choice of the shift vector X) to (gH ,−gH) (the standard Case Y (Σ) < 0
(I)-ground state).

Remark 3. As it is stated Theorem 5 gives few information about the shift vector
X. This inconvenient can be remedied if, as in [5], X is chosen in such a way that
for every σ the identity id : (Σ, g̃(σ)) → (Σ, gH) is a harmonic map (the spatially
harmonic gauge [5]). Full control of the evolution of the shift vector X can be
obtained in this case.

We begin with a preliminary Proposition.

Proposition 5. Say Σ is a compact hyperbolic three-manifold. Fix ν0 > 0 and
V0 > Vinf . Then, for every ε > 0 there is δ(ε, ν0,V0) > 0 such that for every
cosmologically normalized state (g̃, K̃) with ν ≥ ν0, V ≤ V0 and ‖K̂‖L2

g̃
+ Q̃0 ≤ δ

we have V − Vinf ≤ ε.

Proof. It is enough to prove that any sequence (g̃, K̃) (we will forget about putt-

ing sub-index) with ‖ ˆ̃K‖L2
g̃
+ Q̃0 → 0 has a sub-sequence converging in H2 to gH .

19 The rigidity condition is a somehow mild restriction. We remove it with an appropriate use
of the reduced volume. The core of the proof is essentially the same as in [5].
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From Proposition 8 in the Appendix we have (for arbitrary states (g,K))
⎛

⎝
∫

M

2|∇K̂|2 + |K̂|4dvg

⎞

⎠

1
2

≤ C
(
|k|‖K̂‖L2

g
+ Q

1
2
0

)
.

Thus ‖ ˆ̃K‖L4
g̃

→ 0 as ‖ ˆ̃K‖L2
g̃

+ Q̃0 → 0. From this and

R̂icg̃ = E + ˆ̃K + ˆ̃K ◦ ˆ̃K − 1
3
| ˆ̃K|2g̃,

we get that ‖R̂icg̃‖L2
g̃

→ 0. Moreover from the energy constraint we get
‖Rg̃ + 6‖L2

g̃
→ 0. As V is bounded above and ν bounded below, there is a sub-

sequence of (g̃, K̃) converging (in H2) to gH . Thus V → Vinf . �

Proof (of theorem 5). Recall from Theorem 3 (and elliptic estimates) that for any
ε > 0 there is δ > 0 such that if for a cosmologically normalized state (g̃, K̃) it is
Ẽ1 + (V − Vinf ) ≤ δ then there is a diffeomorphism φ such that (φ∗(g̃), φ∗(K̃)) is
ε-close to (gH ,−gH) in H3

gH
× H2

gH
. One can also find δ > 0 such that in addi-

tion the L∞
g̃ -norm of the deformation tensor Πab = ∇aTb (with respect to the

CMC foliation) is less than ε. It is direct to see [5] that this implies the following
inequality for the evolution of Ẽ1

∂σẼ1 ≤ −
(
2 − CẼ 1

2
1

)
Ẽ1. (62)

Thus, this inequality and the monotonicity of the reduced volume show that,
as long as the flow is defined it will remain close in H3 × H2 to the ground
state20 (and thus the volume radius is controlled). As there is a lower bound
for the time interval for which flows are defined if the initial data is close in
H3 × H2 to the ground state21 we conclude that the flow is a long-time flow.
Note that the argument is independent of the shift X. One may well take the
zero shift X = 0. Now, it is clear from Eq. (62), that Ẽ1 → 0 as the logarithmic
time diverges. To show that (up to diffeomorphism) the flow (g̃, K̃) converges (in
H3

gH
×H2

gH
) to (gH ,−gH) it remains to prove that V −Vinf → 0. By Proposition 5

if V(σ) − Vinf ≥ Γ > 0 for all σ (observe that V is monotonically decreasing) it

must be ‖ ˜̂
K‖L2

g̃
(σ) ≥ M > 0 (for some M > 0) for all σ ≥ σ1. If ε is chosen

small enough it must be ‖Ñ(σ) − 1
3‖L∞ < 1

6 for all σ ≥ σ0. The equation for the
evolution of the reduced volume

dV
dσ

= −3
∫

Σ

Ñ | ˜̂
K|2dvg̃, (63)

20 Note again, as was explained at the end of the Introduction, that here “close in H3 × H2”
means close up to diffeomorphism.
21 See Theorem 1 in [16] for more details and also [5] for a continuity criteria in the harmonic
gauge.
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shows that if ‖ ˜̂
K‖L2

g̃
(σ) ≥ M > 0 for σ ≥ σ1 then V − Vinf must go below zero

after some time which is a contradiction. �

4. Hyperbolic Rigidity, Ground States and Gravitational Waves

There are several theoretical reasons to believe that the reduced volume V should
decrease to its infimum Vinf =

(− 1
6Y (Σ)

) 3
2 at least for solutions in the family of

long time solutions having a uniform bound on Ẽ1. It may be possible (see [15]) to
prove this claim for long time solutions having uniform bounds on the Cα

g̃ -norm of
(the electric and magnetic parts of the) space–time Riemann tensor. Proving the
claim for solutions in the family of long-time solutions having a uniform bound in
Ẽ1 could be a task of much greater difficulty. In this section we present various
facts and arguments pointing to the validity of this claim.

According to Margulis, hyperbolic cusps are rigid in the following sense: if a
complete hyperbolic metric g̃H on a manifold R × T 2 is close enough to a hyper-
bolic cusp metric g̃C = dx2 + e2xgT 2 over a domain Ω = [−a,∞) × T 2 with a
positive and big enough, then g̃H is isometric to g̃C .

Consider the following spaces

DC ={g̃ on R×T 2/Rg̃ ≥−6, g̃ ∼ g̃R when x → ∞ andg̃ ∼ g̃L when x → −∞},
SC = {g̃ ∈ on D × S1/Rg̃ ≥ −6, and g ∼ g̃S,R when x → ∞},

where DC accounts for “double cusps” and SC for “single cusp”. g̃R and g̃L are
two arbitrary but fixed hyperbolic cusp metrics on the (right and left) ends of
R×T 2 and g̃S,R is an arbitrary but fixed metric on the (right) end of D×S1 (D is
the unit two-dimensional disc). Consider now two cosmologically normalized flow
(g̃DC , K̃DC) and (g̃SC , K̃SC) over R × T 2 and D × S1 respectively and with g̃DC

in DC and g̃SC in SC (see Fig. 4). As the states evolve one may argue that they
lose “energy” (actually they lose reduced volume) by the emission of cylindrical
gravitational waves22 at the ends of the cusps. According to Margulis the states
would settle into the infinite double cusp (for the flow (g̃DC , K̃DC)) or the infinite
single cusp (for the flow (g̃SC , K̃SC)) if it were the case that these configurations
are V-rigid. This is indeed true for the double cusp (a ground state) but false for
the single cusp (a non-ground state) in the following sense.

Proposition 6. Consider the set of metrics g̃ in DC with g̃ ∼ g̃R
23 for x ∈ [aR,∞)

and g̃ ∼ g̃L for x ∈ (−∞, aL]. Call VR the volume of g̃R on the region (−∞, aR]×T 2

and similarly for the left cusp (VL). Then the volume of g̃ on the region [aL, aR]×T 2

is strictly greater than VL + VR.

22 In the definition of the sets DC and SC we can assume the metrics g̃ are T 2-symmetric. That
would justify the statement that the system emits cylindrical gravitational waves.
23 A precise meaning for ∼ can be given.



1598 M. Reiris Ann. Henri Poincaré

Figure 4. The (conjectural) evolution of the Double Cusp and
Single Cusp.

Proposition 7. Consider the set of metrics g̃ in SC with g̃ = g̃S,R for x ∈ [aR,∞).
Call VR the volume of g̃S,R on the region (−∞, aR] × T 2. Then there exist met-
rics g̃ as described above and having volume inside the region (−∞, aR] × T 2 less
than VR.

A proof of Proposition 7 and an explicit construction of such metrics is given in [13]
(the metrics are indeed T 2-symmetric). It can be seen analytically (and numeri-
cally) that as time evolves the evolution of the (Yamabe) initial states (g̃0,−g̃0)
described in [13] actually separates from the single infinite hyperbolic cusp (as it
should be).
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Appendix

We begin by recalling a useful formula from [7]. Let V a symmetric traceless (2, 0)
tensor with

(div V )a = ∇bV
b
a = ρ,

(curl V )ab =
1
2
(ε lm

a ∇lVmb + ε lm
b ∇lVma) = σ,

then ∫

Σ

|∇V |2 + 3〈Ric, V ◦ V 〉 − 1
2
R|V |2 =

∫

Σ

|σ|2 +
1
2
|ρ|2. (64)
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Proposition 8. Say Σ is a compact three-manifold. Then Q0 and |k|2‖K̂‖2
L2

g
control

‖∇K̂‖2
L2

g
, ‖K̂‖4

L4
g

and ‖R̂ic‖2
L2 . More in particular we have

⎛

⎝
∫

M

2|∇K̂|2 + |K̂|4dvg

⎞

⎠

1
2

≤ C
(
|k|‖K̂‖L2

g
+ Q

1
2
0

)
, (65)

where C is a numeric constant.

Observe the absence of the volume in Eq. (65) and that all norms involved are
intrinsic.

Proof. Substituting Ric = E − kK + K ◦ K, K = K̂ + k
3g and V = K̂ in Eq. (64)

we get
∫

Σ

|∇K̂|2+
5
2
|K̂|4−k〈K̂, K̂ ◦ K̂〉 − k2

3
|K̂|2+3〈E, K̂ ◦ K̂〉dvg =

∫

Σ

|B|2dvg.

This equation gives the bound
∫

Σ

|∇K̂|2 + |K̂|4dvg ≤ C

∫

Σ

(|k|2|K̂|2 + |k||K̂|3 + |K̂|2|E| + |B|2)dvg, (66)

Observe now that the inequalities

∫

Σ

|K̂|2(|E|2 + |B|2) 1
2 dvg ≤

⎛

⎝
∫

Σ

|K̂|4dvg

⎞

⎠

1
2

Q
1
2
0 ,

∫

Σ

|K̂|3dvg ≤
⎛

⎝
∫

Σ

|K̂|2dvg

⎞

⎠

1
2

⎛

⎝
∫

Σ

|K̂|4dvg

⎞

⎠

1
2

,

transform Eq. (66) into

2‖∇K̂‖2
L2

g
+ ‖K̂‖4

L4
g

− C
(
|k|‖K̂‖L2

g
+ Q

1
2
0

)
‖K̂‖2

L4
g

− C(|k|2‖K̂‖2
L2

g
+ Q0) ≤ 0.

Now make x2 = 2
∫
Σ

|∇K̂|2 + |K̂|4dvg, a =
(
|k|‖K̂‖L2

g
+ Q

1
2
0

)
in the last equation.

We get

x2 − Cax − Ca2 ≤ 0.

Solving for x in the inequality above we get Eq. (65) which finishes the proof. �

The next proposition relates ‖K̂‖L2
g

with V − Vinf or V depending on the
signature of the Yamabe invariant Y (Σ).
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Proposition 9. Say Σ is a compact three-manifold. Then

i) if Y (Σ) > 0, |k|2 ∫
Σ

|K̂|2dvg ≤ C|k| 1
2 V 1

2 (
∫
Σ

|K̂|4dvg)
1
2 ,

ii) if Y(Σ) = 0, |k|2 ∫
Σ

|K̂|2dvg ≤ C|k| 1
2 (V − Vinf )

1
2

(∫
Σ

|K̂|4dvg

) 1
2

,

iii) if Y(Σ)<0, |k|2 ∫
Σ

|K̂|2dvg ≤C

(
|k|(V−Vinf )+|k| 1

2 (V−Vinf )
1
2

(∫
Σ

|K̂|4dvg

) 1
2
)

where C is a numeric constant.

Proof. i) and ii) (Y (Σ) > 0 or Y (Σ) = 0). This is immediate from the formula

|k|2
∫

Σ

|K̂|2dvg ≤ |k| 1
2 (|k|3V ol(Σ))

1
2

⎛

⎝
∫

Σ

|K̂|4dvg

⎞

⎠

1
2

.

iii) Y (Σ) < 0. Assume k = −3 and let gY be the unique Yamabe metric of con-
stant scalar curvature RY = −6 in the conformal class of g. If g = φ4gY then φ is
determined by

− ΔgY
φ +

RY

8
φ − 1

8
φ−3|K̂|2Y +

1
12

k2φ5 = 0, (67)

where Δ = ∇2. The maximum principle implies (putting the values RY = −6 and
k = −3) that

6(φ5
min − φmin) ≥ φ−3

min|K̂|2Y ≥ 0,

which makes φ ≥ 1. Then observe that

−Y (Σ) ≤ −RY (
∫

Σ

1 dvY )
2
3 ,

where dvY = dvgY
. This gives

0 ≤ 6
3
2

⎛

⎝
∫

Σ

φ6 − 1 dvY

⎞

⎠ ≤ 6
3
2

∫

Σ

φ6dvY − (−Y (Σ))
3
2

=
(

2
3
k2V ol(Σ)

2
3

) 3
2

− (−Y (Σ))
3
2 .

Therefore
∫

Σ

(φ − 1)kdvY ≤ C(V − Vinf),

for k = 1, . . . , 6. Integrating Eq. (67), we get

6
∫

Σ

(φ5 − φ)dvY =
∫

Σ

φ−3|K̂|2Y dvY . (68)
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Observe that
∫

Σ

φ−2|K̂|2Y dvY =
∫

Σ

φφ−3|K̂|2Y dvY

=
∫

Σ

φ−3|K̂|2Y dvY +
∫

Σ

(φ − 1)φ−3|K̂|2Y dvY

and
∫

Σ

(φ − 1)φ−3|K̂|2Y dvY =
∫

Σ

(φ − 1)φ2φ−5|K̂|2Y dvY

≤
⎛

⎝
∫

Σ

(φ − 1)2φ4 dvY

⎞

⎠

1
2

⎛

⎝
∫

Σ

φ−10|K̂|4Y dvY

⎞

⎠

1
2

. (69)

On the other hand note that
∣
∣
∣
∣
∣
∣

∫

Σ

(φ − 1)2φ4 dvY

∣
∣
∣
∣
∣
∣
≤

∫

Σ

|φ6 − 1| + 2|φ5 − 1| + |φ4 − 1|dvY ≤ C(V − Vinf). (70)

Putting together Eqs. (68),(69) and (70) we get

‖K̂‖2
L2

g
≤ C

(
(V − Vinf ) + (V − Vinf )

1
2 ‖K̂‖2

L4
g

)
, (71)

which after scaling finishes the proof. �

Combining Propositions 8 and 9 we get

Proposition 10. Say Σ is a compact three-manifold. Then if Y (Σ) > 0 we have
∫

Σ

2|∇K̂|2 + |K̂|4dvg ≤ C(|k|V + Q0),

while if Y (Σ) ≤ 0 we have
∫

Σ

2|∇K̂|2 + |K̂|4dvg ≤ C(|k|(V − Vinf ) + Q0),

where C is a numeric constant.

We also get

Proposition 11. Say Σ is a compact three-manifold. If Y (Σ) > 0 we have
∫

Σ

|k|2|K̂|2dvg ≤ C
(
|k|V + (|k|VQ0)

1
2

)
,
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while if Y (Σ) ≤ 0 (same for Y (Σ) = 0 than for Y (Σ) < 0)
∫

Σ

|k|2|K̂|2dvg ≤ C
(
|k|(V − Vinf ) + (|k|(V − Vinf )Q0)

1
2

)
.

where C is a numeric constant.

Proof. Combine equations in Proposition 9 and Eq. (65). Making x =
|k|‖K̂‖L2 and a = |k| 1

2 (V − Vinf )
1
2 if Y (Σ) ≤ 0 or a = |k| 1

2 V if Y (Σ) > 0 we

arrive at the inequality x2 − Cax − Ca2 − CaQ
1
2
0 ≤ 0. From it we get x2 ≤

C(a2 + aQ
1
2
0 ). �

A direct consequence of the propositions above is

Proposition 12. Say Σ is a compact three-manifold, then V, |k| and Q0 control
‖R̂ic‖L2

g
. In particular we have

‖R̂ic‖2
L2

g
≤ C(|k|V + Q0),

where C is a numeric constant.

Proof. Use R̂ic = E − k
3 K̂ + K̂ ◦ K̂ − 1

3 |K̂|2g together with the Propositions 8
and 9. �

Using the energy constraint R = |K̂|2 − 2
3k2 and Proposition 10 we get

Proposition 13. Let Σ be a compact three-manifold. Then, V, |k| and Q0 control
the scalar curvature in the following way

∫

Σ

|∇R| 4
3 + R2dvg ≤ C(|k|V + Q0),

where C is a numeric constant.

Note that |∇R| 4
3 and R2 scale as a distance−4.

Proof. Squaring the energy constraint and integrating we obtain
∫

Σ

R2dvg ≤
∫

Σ

|K̂|4 +
4
9
k4dvg ≤ C(|k|V + Q0)

where in the last inequality we have used Proposition 10. On the other hand, dif-
ferentiating the energy constraint we have |∇R| 4

3 ≤ C|∇K̂| 4
3 |K̂| 4

3 . Integrating and
applying the Hölder inequality we obtain

∫

Σ

|∇R| 4
3 dvg ≤ C

⎛

⎝
∫

Σ

|∇K̂|2dvg

⎞

⎠

2
3

⎛

⎝
∫

Σ

|K̂|4dvg

⎞

⎠

1
3

,
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and if we apply Proposition 10 over each one of the factors on the RHS of the last
equation we obtain

∫

Σ

|∇R| 4
3 dvg ≤ C(|k|V + Q0),

as desired. �
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